Main Article Content


The development of antibiotics calls for the critical consideration of instances of resistance. Infectious disorders brought on by resistant bacterial infections could affect the entire world. It is believed that the protein that the bacteria generate may one day replace antibiotics as an alternative antibacterial agent. Both Gram-positive and Gram-negative bacteria have the ability to manufacture bacteriocin. The bacteriocin type produced by Escherichia coli, notably colicin, has been demonstrated to inhibit the same bacteria through various essential methods. Colicin, a substance made by an E. coli cell, is also capable of protecting itself from attack; however, this defense mechanism has not yet been identified. The traits of colicin and the method by which it functions as a different antimicrobial agent to inhibit other bacteria will be covered in this article. We analyze the potential of colicin as an antibacterial agent in E. coli using PRISMA methods from diverse academic sources. Here, we found that the structure of the colicin, namely its central receptor domain, aids in the recognition of target cells. Promising results were found in recent studies on the antibacterial effects of the E. coli and colicin combination


colicin antibacterial agent Eschericia coli

Article Details

How to Cite
Gozali C, Rukmana A. Potential of Colicin as an Antibacterial Agent in Escherichia coli. EKSAKTA [Internet]. 2023Jun.30 [cited 2024Apr.22];24(02):216-25. Available from:


  1. Braz, V. S., Melchior, K., & Moreira, C. G. (2020). Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Frontiers in Cellular and Infection Microbiology, 10, 1–9.
  2. Urban-Chmiel, R., Marek, A., Stepien-Pysniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic Resistance in Bacteria-A Review. Antibi, 11, 1078–1108.
  3. Widodo, A., Lamid, M., Effendi, M. H., Khailrullah, A. R., Kurniawan, S. C., Silaen, O. S. M., Riwu, K. H. P., Yustinasari, L. R., Afnani, D. A., Dameanti, F. N. A. E. P., & Ramandinianto, S. C. (2023). Antimicrobial resistance characteristics of multidrug resistance and extended-spectrum beta-lactamase-producing Escherichia coli from several dairy farms in Probolinggo, Indonesia. Biodiversitas, 24(1), 215–221.
  4. Jin, X., Kightlinger, W., & Hong, S. H. (2019). Optimizing cell-free protein synthesis for increased yield and activity of colicins. Methods and Protocols, 2(2), 1–12.
  5. Aghababa, A. H. A., & Nadi, M. (2021). Mechanisms of Antibiotic Resistance in Bacteria: A Review. Medicine Personalized Journal, 6(21), 17–22.
  6. Cohen-Khait, R., Harmalkar, A., Pham, P., Webby, M. N., Housden, N. G., Elliston, E., Hopper, J. T. S., Mohammed, S., Robinson, C. V., Gray, J. J., & Kleanthous, C. (2021). Colicin-Mediated Transport of DNA through the Iron Transporter FepA. MBio, 12(5), 1–11.
  7. Kohoutova, D., Forstlova, M., Moravkova, P., Cyrany, J., Bosak, J., Smajs, D., Rejchrt, S., & Bures, J. (2020). Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia. BMC Cancer, 20(1), 1–7.
  8. Aljohani, A. B., Al-Hejin, A. M., & Shori, A. B. (2023). Bacteriocins as promising antimicrobial peptides, definition, classification, and their potential applications in cheeses. Food Science and Technology (Brazil), 43, 1-10.
  9. Amarantini, C., Prakasita, V. C., & Cahyani, L. E. (2021). The Effect of Temperatures and pH on Bacteriocin Activity of Lactic Acid Bacteria Strain Pr 4.3L From Peda Fish. Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020), 528, 28–34.
  10. Shushan, A., & Kosloff, M. (2021). Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins. Scientific Reports, 11(1), 1–15.
  11. Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., Darb Emamie, A., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), 1–40.
  12. Fokt, H., Cleto, S., Oliveira, H., Araújo, D., Castro, J., Cerca, N., Vieira, M. J., & Almeida, C. (2022). Bacteriocin Production by Escherichia coli during Biofilm Development. Foods, 11(17), 1-13.
  13. Housden, N. G., Loftus, S. R., Moore, G. R., James, R., & Kleanthous, C. (2005). Cell entry mechanism of enzymatic bacterial colicins: Porin recruitment and the thermodynamics of receptor binding. Proceedings of the National Academy of Sciences, 102(39), 13849–13854.
  14. Arunmanee, W., Ecoy, G. A. U., Khine, H. E. E., Duangkaew, M., Prompetchara, E., Chanvorachote, P., & Chaotham, C. (2020). Colicin N mediates apoptosis and suppresses integrin-modulated survival in human lung cancer cells. Molecules, 25(4), 1–15.
  15. Rivas, L., Mellor, G. E., Gobius, K., & Fegan, N. (2015). Detection and typing strategies for pathogenic Escherichia coli. Springer Nature Switzerland AG. Switzerland.
  16. Sari, R., Apridamayanti, P., & Puspita, I. D. (2018). Sensitivity of Escherichia coli Bacteria Towards Antibiotics in Patient with Diabetic Foot Ulcer. Pharmaceutical Sciences and Research, 5(1), 19–24.
  17. Basavaraju, M., & Gunashree, B. S. (2023). Escherichia coli : An Overview of Main Characteristics. IntechOpen. 1-23.
  18. Talaro, K. P., & Chess, B. (2015). Foundations in Microbiology 9th Edition. McGraw-Hill Education. New York.
  19. Tortora, G. J., Funke, B. R., & Case, C. L. (2019). Microbiology: An Introduction. Pearson. Boston.
  20. Sarowska, J., Olszak, T., Jama-Kmiecik, A., Frej-Madrzak, M., Futoma-Koloch, B., Gawel, A., Drulis-Kawa, Z., & Choroszy-Krol, I. (2022). Comparative Characteristics and Pathogenic Potential of Escherichia coli Isolates Originating from Poultry Farms, Retail Meat, and Human Urinary Tract Infection. Life, 12(6), 845-864.
  21. Cho, S., Hiott, L. M., Barrett, J. B., McMillan, E. A., House, S. L., Humayoun, S. B., Adams, E. S., Jackson, C. R., & Frye, J. G. (2018). Prevalence and characterization of Escherichia coli isolated from the Upper Oconee Watershed in Northeast Georgia. PLoS ONE, 13(5), 1–15.
  22. Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., & Choroszy-Krol, I. (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathogens, 11(1), 1–16.
  23. Allocati, N., Masulli, M., Alexeyev, M. F., & Di Ilio, C. (2013). Escherichia coli in Europe: An overview. International Journal of Environmental Research and Public Health, 10(12), 6235–6254.
  24. Masi, M., Vuong, P., Humbard, M., Malone, K., & Misra, R. (2007). Initial steps of colicin E1 import across the outer membrane of Escherichia coli. Journal of Bacteriology, 189(7), 2667–2676.
  25. Shalibeik, S., Ghandehari, F., Ahadi, A.-M., Rastegari, A.-A., & Ghiasian, M. (2022). Antibacterial Activity of the Peptide Microcin J25 Produced by Escherichia coli. Medical Laboratory Journal, 16(3), 14–18.
  26. Sharma, K., Kaur, S., Singh, R., & Kumar, N. (2021). Classification and Mechanism of Bacteriocin Induced Cell Death: a Review. Journal of Microbiology, Biotechnology and Food Sciences, 11(3), 1–10.
  27. Samuels, A. N., Roggiani, M., Smith, K. A., Zhu, J., Goulian, M., & Kohli, R. M. (2020). Deciphering the role of colicins during colonization of the mammalian gut by commensal E. Coli. Microorganisms, 8(5), 1–16.
  28. Asarina, S., Sariasih, S., & Kulsum, Y. (2022). In silico Prediction of Bacteriocin Gene within the Genus of Lactobacillus. Jurnal Biologi Indonesia, 18(1), 103–110.
  29. Cramer, W. A., Sharma, O., & Zakharov, S. D. (2018). On mechanisms of colicin import: The outer membrane quandary. Biochemical Journal, 475(23), 3903–3915.
  30. Sharma, K., Kaur, S., Singh, R., & Kumar, N. (2021). Classification and Mechanism of Bacteriocin Induced Cell Death: a Review. Journal of Microbiology, Biotechnology and Food Sciences, 11(3), 1–10.
  31. Francis, M. R., Webby, M. N., Housden, N. G., Kaminska, R., Elliston, E., Chinthammit, B., Lukoyanova, N., & Kleanthous, C. (2021). Porin threading drives receptor disengagement and establishes active colicin transport through Escherichia coli OmpF. The EMBO Journal, 40(21), 1–19.
  32. Jin, X., Kightlinger, W., Kwon, Y. C., & Hong, S. H. (2018). Rapid production and characterization of antimicrobial colicins using Escherichia coli-based cell-free protein synthesis. Synthetic Biology, 3(1), 1–11.
  33. Xing Jin, W. K. and S. H. H. (2019). Optimizing Cell-Free Protein Synthesis for Increased Yield and Activity of Colicins. Methods and Protocols MDPI, 2, 1–12.
  34. Li, Y., Li, Y., Mengist, H. M., Shi, C., Zhang, C., Wang, B., Li, T., Huang, Y., Xu, Y., & Jin, T. (2021). Structural Basis of the Pore-Forming Toxin / Membrane Interaction. Toxins, 13, 1–19.
  35. Zakharov, S. D., Eroukova, V. Y., Rokitskaya, T. I., Zhalnina, M. V., Sharma, O., Loll, P. J., Zgurskaya, H. I., Antonenko, Y. N., & Cramer, W. A. (2004). Colicin occlusion of OmpF and TolC channels: Outer membrane translocons for colicin import. Biophysical Journal, 87(6), 3901–3911.
  36. Fathizadeh, H., Saffari, M., Esmaeili, D., Moniri, R., & Salimian, M. (2020). Evaluation of the antibacterial activity of enterocin A-colicin E1 fusion peptide. Iranian Journal of Basic Medical Sciences, 23(11), 1471–1479.
  37. Noskova, S., Sukhikh, S., Babich, O., & Bulgakova, O. (2021). Determination of minimum inhibitory concentrations of lactic acid bacteria and other antagonist microorganisms. E3S Web of Conferences, 291, 1-7.
  38. Paitan, Y. (2018). Current Trends in Antimicrobial Resistance of Escherichia coli. Springer International Publishing. Switzerland.
  39. Łojewska, E., Sakowicz, T., Kowalczyk, A., Konieczka, M., Grzegorczyk, J., Sitarek, P., Skała, E., Czarny, P., Śliwiński, T., & Kowalczyk, T. (2020). Production of recombinant colicin M in Nicotiana tabacum plants and its antimicrobial activity. Plant Biotechnology Reports, 14(1), 33–43.
  40. Budiardjo, S. J., Stevens, J. J., Calkins, A. L., Ikujuni, A. P., Wimalasena, V. K., Firlar, E., Case, D. A., Biteen, J. S., Kaelber, J. T., & Slusky, J. S. G. (2022). Colicin E1 opens its hinge to plug TolC. ELife, 11, 1-24.
  41. Budiardjo, S. J., Deay, J. J., Calkins, A. L., Wimalasena, V. K., Montezano, D., Biteen, J. S., & Slusky, J. S. G. (2019). Colicin E1 Fragments Potentiate Antibiotics by Plugging TolC. BioRxiv, 1-32.
  42. Hahn-Löbmann, S., Stephan, A., Schulz, S., Schneider, T., Shaverskyi, A., Tusé, D., Giritch, A., & Gleba, Y. (2019). Colicins and salmocins – New classes of plant-made non-antibiotic food antibacterials. Frontiers in Plant Science, 10(473), 1–16.
  43. Atanaskovic, I., & Kleanthous, C. (2019). Tools and approaches for dissecting protein bacteriocin import in gram-negative bacteria. Frontiers in Microbiology, 10(646), 1–12.