Main Article Content

Abstract

Dutch teak (Guazuma ulmifolia Lamk.) is a tree originating from Latin America (Brazil and Mexico). The results of the phytochemical test showed that Dutch teak leaves positively contained flavonoids, alkaloids (Dragendorff reagent), steroids, and saponins. The purpose of this study was to characterize the flavonoid compounds and test the anti-cholesterol properties of Dutch teak leaf extract. Flavonoid characterization methods used Mg-HCl (yellow), H2SO4 (reddish orange), NaOH (yellow), KKt-2A, UV-Vis, and FT-IR reagents. Anti-cholesterol test using the Lieberman-Burchard method. The flavonoid crystals obtained were in the form of amorphous crystals of 0.1047 grams. In KKt-2A there is a change in color from yellow to greenish yellow when viewed with a UV lamp. The UV-Vis spectrophotometer has an absorption wavelength of 326 nm. The results of FT-IR analysis showed the presence of functional groups: OH, CH, C=O, C=C, and COC. Based on these data it can be concluded that the isolated flavonoids are in the form of amorphous crystals which belong to the flavone class with the name 5,7,4' - Trihydroxyflavone-6-Prenyl. The results of the cholesterol reduction test stated that Dutch teak leaves could be anti-cholesterol as seen from the absorbance value being smaller and the percentage of anti-cholesterol activity being greater.

Keywords

Anti-Cholesterol, Dutch teak leaves, Flavonoid, Maceration

Article Details

How to Cite
1.
Parbuntari H, Yuliandari F, Martha RD. Isolation of Flavonoid Compounds and Anti-Cholesterol Test of Dutch Teak Leaf Extract (Guazuma ulmifolia Lamk.). EKSAKTA [Internet]. 2023Sep.30 [cited 2024Apr.28];23(03):330-42. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/408

References

  1. M. Rafi, N. Meitary, D. A. Septaningsih, M. Bintang, and M. Rafi. (2020). Phytochemical Profile and Antioxidant Activity of Guazuma ulmifolia Leaves Extracts Using Different Solvent Extraction, vol. 31, no. 3, pp. 171–180.
  2. Z. R. Lumbantobing et al. (2019). Jati Belanda (Guazuma ulmifolia Lamk .) Sebagai Terapi Alternatif Obesitas Jati Belanda ( Guazuma ulmifolia Lamk .) as an alternative therapy for Obesity, vol. 8, pp. 161–167.
  3. W. Sumarni, S. Sudarmin, and S. S. Sumarti. (2019). The scientification of jamu: A study of Indonesian’s traditional medicine, J. Phys. Conf. Ser., vol. 1321, no. 3.
  4. G. A. Pereira et al. (2019).Bioflavors and Bioactive Compounds Laboratory , Department of Food Science,Food Res. Int., p. 108713.
  5. N. Macêdo, P. Araujo, and G. M. Pastore. (2019). a Bioflavors and Bioactive Compounds Laboratory , Department of Food Science , School b Shimadzu do Brasil Comércio Ltda ., Barueri , SP 06455-000 , Brazil * Corresponding Author : Gustavo Araujo PEREIRA, Food Chem., p. 125857.
  6. T. Widyawati, N. A. Yusoff, I. Bello, M. Z. Asmawi, and M. Ahmad. (2022). Bioactivity-Guided Fractionation and Identification of Antidiabetic Compound of Syzygium polyanthum (Wight.)’s Leaf Extract in Streptozotocin-Induced Diabetic Rat Model, 2022.
  7. H. Mechqoq et al. (2022). Phytochemical Screening, and In Vitro Evaluation of the Antioxidant and Dermocosmetic Activities of Four Moroccan Plants: Halimium antiatlanticum, Adenocarpus artemisiifolius, Pistacia lentiscus and Leonotis nepetifolia, Cosmetics, vol. 9, no. 5, pp. 1–15.
  8. Q. Fardiyah, Suprapto, F. Kurniawan, T. Ersam, A. Slamet, and Suyanta. (2020). Preliminary Phytochemical Screening and Fluorescence Characterization of Several Medicinal Plants Extract from East Java Indonesia, IOP Conf. Ser. Mater. Sci. Eng., vol. 833, no. 1.
  9. M. Danial, P. Salempa, J. Kimia, U. Negeri, and J. M. Raya. (2021). Isolasi dan Identifikasi Senyawa Metabolit Sekunder Ekstrak Etil Asetat Daun Kayu Jawa (Lannea coromandelica ( Houtt ) Merr ). Isolation and Identification of Secondary Metabolites Compound Etil Acetate Extract of Kayu Jawa leaf ( Lannea coromandelica), J. Chem., vol. 1377, pp. 84–93.
  10. K. F. Chambers, P. E. Day, H. T. Aboufarrag, and P. A. Kroon. (2019). Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: A review, Nutrients, vol. 11, no. 11, pp. 1–23.
  11. Y. Eilam, N. Pintel, H. Khattib, N. Shagug, R. Taha, and D. Avni. (2022). Regulation of Cholesterol Metabolism by Phytochemicals Derived from Algae and Edible Mushrooms in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci., vol. 23, no. 22.
  12. H. Setiawan, Fauzan. Benti Etika, Sri Parbuntari. (2019). Pengaruh Waktu Kneading Terhadap Efektifitas Enkapsulasi Molekul Minyak Kemenyan pada β-Siklodekstrin (β-CD), vol. XIII, no. 2, pp. 178–185.
  13. H. Parbuntari, S. B. Etika, M. Mulia, and E. Delvia. (2019). A Preliminary Screening of the Different of Secondary Metabolites Ruku-Ruku Leaves (Ocimum tenuiflorum Linnen) in West Sumatera, vol. 20, no. 2, pp. 17–24.
  14. H. Parbuntari, N. Sakairi, B. Purwono, and S. R. T. (2019). Synthesis and characterisation of a partially methylated dodecyl thiomaltotrioside derivative as a precursor of cyclodextrin analogue Synthesis and characterisation of a partially methylated dodecyl thiomaltotrioside derivative as a precursor of cyclodext, J. Phys. Conf. Ser., vol. 1317, pp. 1–10.
  15. E. S. Savitri, K. Holil, R. siti Resmisari, U. Syarifah, and S. Munawaroh. (2019). Effect of extraction solvent on total phenol , total flavonoid content and antioxidant activities of extract plants Punica granatum , Vitis vinifera L , Ficus carica L . and Olea europea Effect of Extraction Solvent on Total Phenol , Total Flavonoid Conte, vol. 030034, pp. 030034–1, 030034–6.
  16. S. B. Etika and I. Iryani. (2019). Isolation and Characterization of Flavonoids from Black Glutinous Rice (Oryza Sativa L. Var Glutinosa). Eksakta Berk. Ilm. Bid. MIPA, vol. 20, no. 2, pp. 6–16.
  17. S. Din et al., (2022). Isolation and Characterization of Flavonoid Naringenin and Evaluation of Cytotoxic and Biological Efficacy of Water Lilly (Nymphaea mexicana Zucc.), Plants, vol. 11, no. 24.
  18. A. L. Syarifah, R. Retnowati, and S. Soebiantoro. (2019). Characterization of Secondary Metabolites Profile of Flavonoid from Salam Leaves (Eugenia polyantha) Using TLC and UVSpectrophotometry, Pharm. Sci. Res., vol. 6, no. 3, pp. 155–163.
  19. A. Bayu, D. Nandiyanto, R. Oktiani, and R. Ragadhita. (2019). Indonesian Journal of Science & Technology How to Read and Interpret FTIR Spectroscope of Organic Material, no. 1, pp. 97–118.
  20. S. Nuryanti and H. Purwaningsih. (2020). Analysis quantitative of flavonoid content in moringa leaves comes from Sigi Biromaru, Palu, Central Sulawesi, IOP Conf. Ser. Earth Environ. Sci., vol. 458, no. 1, pp. 0–5.
  21. L. Wulandari, B. D. Permana, and N. Kristiningrum. (2020). Determination of total flavonoid content in medicinal plant leaves powder using infrared spectroscopy and chemometrics, Indones. J. Chem., vol. 20, no. 5, pp. 1044–1051.
  22. J. Hayat, M. Akodad, A. Moumen, M. Baghour, and A. Skalli. (2020). Heliyon Phytochemical screening , polyphenols , fl avonoids and tannin content , antioxidant activities and FTIR characterization of Marrubium vulgare L . from 2 different localities of Northeast of Morocco, Heliyon, vol. 6, no. May, p. e05609.
  23. A. Ekalu and J. D. Habila. (2020). Flavonoids: isolation, characterization, and health benefits, Beni-Suef Univ. J. Basic Appl. Sci., vol. 9, no. 1.
  24. K. Chooluck, P. Rojsanga, C. Phechkrajang, and M. Jaturanpinyo. (2021). Bioanalytical method validation for determination of rosmarinic acid in simulated biological media using hplc, Int. J. Appl. Pharm., vol. 13, no. 2, pp. 110–113.
  25. J. Leaf. (2021).Tropical Journal of Natural Product Research Quantitative Phytochemical Analysis and Determination of Anti-Cholesterol Activity, vol. 5, no. October, pp. 1797–1802.
  26. W. J. A. Musa, B. Situmeang, and J. Sianturi. (2019). Anti-cholesterol triterpenoid acids from Saurauia vulcani Korth. (Actinidiaceae), Int. J. Food Prop., vol. 22, no. 1, pp. 1439–1444.
  27. M. R. R. Rahardhian, N. Yuniarti, L. W. Ariani, and R. Suharsanti. (2020). In Vitro Determination of Antioxidant Activity , Total Phenolics , Total Flavonoid , Anti-cholesterol of Extracts Saffron (Crocus sativus), J. Glob. Pharma Technol., vol. 12, no. 9, pp. 223–230.
  28. M. Simorangkir, S. Silaban, and D. Roza. (2022). Anticholesterol activity of ethanol extract of Ranti Hitam (Solanum blumei Nees ex Blume) Leaves: In vivo and In silico study, Pharmacia, vol. 69, no. 2, pp. 485–492.
  29. H. Jang and M. Kim. (2021). Antidiabetic, Anticholesterol, and Antioxidant Activity of Gryllusbimaculatus Fermented by Bacillus and Lactobacillus Strains, Appl. Sci., vol. 11, no. 5, p. 2090.
  30. L. Hartanti, S. M. K. Yonas, J. J. Mustamu, S. Wijaya, H. K. Setiawan, and L. Soegianto. (2019). Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA Reductase inhibitory activity, Heliyon, vol. 5, no. 4, p. e01485.