Main Article Content

Abstract

Bio floc aquaculture techniques are present as a solution to increase the productivity of fish farming. However, until now there are still problems, namely regarding the quality of the water from the pond. In this study, a monitoring tool was designed using an ESP32 microcontroller with the support of a BME280 sensor, RTD PT100 to measure water temperature and a turbidity sensor to measure floc volume. Furthermore, this sensor is planted on Wi-Fi to be able to connect to the internet network for IoT applications so that it can be monitored in real time. Likewise, the display results from the monitoring of the application system are directly read on the Google sheet display and in real time. From the test results of the system built, obtained the accuracy level of the BME280 sensor is 96.5%, PT100 RTD is 94.6% and for the turbidity sensor is 98%. Meanwhile the observed air temperature value can reach 34.36°C, the water temperature reaches 28.75°C, and the floc ratio reaches 30.15 mL.L-1. From the results shown, it clearly indicates that the water quality monitoring system has been successful and is working very well.

Keywords

Bio floc Sensor system Smart Control Termperature Turbidity

Article Details

How to Cite
1.
Hartono A, Rofiq A, Ahmad Prakosa J, Ramli R, Syafrijon S. Design and Development a Smart Control System for Temperature and Turbidity of Bio Floc Fish Ponds. EKSAKTA [Internet]. 2023Jun.30 [cited 2024Apr.26];24(02):133-4. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/400

References

  1. Ahmad M. A., Nass er S. F., Mostafa K.S. T., Usama M. T., Hesham R. A. M., Ehab El-H., Hien V D., & Ashraf M.S.-A.G. (2022). Influence of dietary C: N: P ratios on Nile tilapia Oreochromis niloticus growth performance and formation of water biotic communities within a biofloc system containment, Aquaculture Reports, 24, 1-11.
  2. Eric O. O., Nicholas O. O., Kevin O. O., Domitila N K., & Jonathan M. M. (2021). The Prosfects Biofloc of Technology (BFT) for Susistainable Aquacultere Development, Scientific African, 14, 1-11.
  3. Ahmed, N.M., Flefil, N.S., Tayel, S.I., Mahmoud, S.A., & Soliman, A. (2019). Biological treatment of ammonia using biofloc system for Oreochromis niloticus fish, Egypt. J. Aquat. Biol. Fish, 23(4), 639–657.
  4. Deswati D., Safni S., Khairiyah K., Yani S., Yusuf Y., & Pardi H. (2020). Biofloc technology: water quality (pH, temperature, DO, COD, BOD) in a flood & drain aquaponic system, International Journal of Environmental Analytical Chemistry, 102(18), 6835-6844
  5. Manoj M., Kumar V. D., Arif M., Bulai E-R., Bulai P., & Geman O. (2022). State of the Art Techniques for Water Quality Monitoring Systems for Fish Ponds Using IoT and Underwater Sensors: A Review, Sensors, 22, 1-17.
  6. Fariza H. A., & Chaerul A. (2020). IoT-based Automatic Fish Pond Control System, IPTEK Journal of Proceeding Series, 6, 394-398.
  7. Llario F., Romano L., Rodilla M., Sebastiá-Frasquet M., & Poersch L. (2020). Application of Bacillus amyloliquefaciens as probiotic for Litopenaeus vannamei (Boone, 1931) cultivated in a biofloc system, Iranian Journal of Fisheries Sciences, 19(2), 904 – 920.
  8. Lunda R., Roy K., Dvorak P., Kouba A., & Mraz J. (2020). Recycling biofoc waste as novel protein source for crayfsh with special reference to crayfsh nutritional standards and growth trajectory, Scientific Reports, 10, 19607.
  9. Gamboa-Delgado, J. & Márquez-Reyes, J. M. (2018). Potential of microbial-derived nutrients for aquaculture development, Rev. Aquac.,10, 224–246.
  10. Schveitzer, R. Fonseca G., Orteney N., Menezes F.C.T., Thompson F.L., Thompson C.C., & Gregoracci G.B. (2020). The role of sedimentation in the structuring of microbial communities in biofoc-dominated aquaculture tanks, Aquaculture, 514, 734493.
  11. Amelia M. N. (2018). Sistem Monitoring Budidaya Ikan Lele Teknik Bioflok Berdasarkan Suhu dan PH Air, Thesis (Under Graduates), Universitas Negeri Semarang, Semarang.
  12. Paraya G. R. & Tanone R. (2018). Penerapan Firebase Realtime Database Pada Prototype Aplikasi Pemesanan Makanan Berbasis Android, J. Tek. Inform. dan Sist. Inf., 4(3), 397–406.
  13. Sudiartha I K G., Indrayana I N E., Suasnawa I W., Asri S A., & Sunu P W. (2020). Data Structure Comparison Between MySql Relational Database and Firebase Database NoSql on Mobile Based Tourist Tracking Application, Journal of Physics: Conference Series 1569. 1-7.
  14. Suleiman Y.Y., Michael L., Sakir S., John M., Mark M., Helen M., Leeanne O., Mark A. T., Paul S. E., Robert M., & Geraldine M. (2018). MobiQ: A modular Android application for collecting social interaction, repeated survey, GPS and photographic data, SoftwareX, 7, 147-149.
  15. Li W-J., Yen C., Lin Y-S., Tung S-C., & Huang S M. (2018). JustIoT Internet of Things based on the Firebase Real-time Database, 2018 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE), Hsinchu, Taiwan, 43-47
  16. Mozumder S.A., & Sagar A.S.M.S. (2021). Smart IoT-Biofloc water management system using Decision regression tree, Proceedings of International Conference on Fourth Industrial Revolution and Beyond 2021, pp 229–241.
  17. Holovatyy A. (2021). Development of IoT Weather Monitoring System Based on Arduino and ESP8266 Wi-Fi Module, IOP Conf. Series: Materials Science and Engineering 1016, 1-10
  18. Pasika S., & Gandla S T. (2020). Smart water quality monitoring system with cost-effective using IoT, Heliyon 6. e04096, 1-9.
  19. Singh M & Ahmed S. (2021). IoT based smart water management systems: A systematic review, Materials Today: Proceedings 46, 5211–5218.
  20. Kumar C M., Gouthem S E., Srithar A., & Prakash V S. (2021). IOT based water quality control and filteration system, Materials Today: Proceedings 46. 3557–3560
  21. Alsalemi A., Homsi Y A., Disi M A., Ahmed I., Bensaali F., Amira A., & Alinier G. (2017). Real-Time Communication Network Using Firebase Cloud IoT Platform for ECMO Simulation, 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 178-182.
  22. Goswami L.,& Agrawal P. (2020). IOT based Diagnosing of Fault Detection in Power Line Transmission through GOOGLE Firebase database, 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India, 415-420.
  23. Shevchenko, G. V. Glubokov N. A., Yupashevsky A. V., & Kazmina A. S. (2020), Air Flow Sensor Based on Environmental Sensor BME280, 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Chemal, Russia, 432-435.
  24. Babiuch M., Foltýnek P., & Smutný P. (2019). Using the ESP32 Microcontroller for Data Processing, 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 2019, 1-6.
  25. Trevathan J., Read W., & Schmidtke. (2020). Towards the Development of an A
  26. ordable and Practical Light Attenuation Turbidity Sensor for Remote Near Real-Time Aquatic Monitoring, Sensors, 20, 1-15.