Main Article Content

Abstract

Geographical location and topography determine the characteristics of atmospheric parameters in a location. This study aims to determine the comparison between wind patterns that occur in coastal and non-coastal areas, then the correlation between wind patterns and parameters of temperature, humidity and rainfall that occur at the Tanjung Priok Maritime Station and the Curug Meteorological Station. The chosen research method is descriptive analysis. This result is analysis of hourly wind data at the Tanjung Priok Maritime Station is dominated by local winds or sea breezes while the Curug Station is dominated by monsoon winds. The dominant wind direction in the months of the transitional season has a smaller percentage than in other months. Furthermore, the rainfall is dominated by rainfall from the west in the seasonal pattern as well as the humidity parameters at the two research stations. Temperatures in coastal areas as a whole are higher than non-coastal temperatures with a difference of up to 3 degrees Celsius. Last, in the temperature trend there is a random distribution pattern at the Curug meteorological station and there is no trend at the Tanjung Priok Maritime Station. The largest temperature is the same in 2019 and the average temperature is 0.3/year.

Keywords

geographical topographical parameters windrose

Article Details

How to Cite
1.
Anam AR, Asfahanif F, Muthi’ah VD, Pangedoan AD, Giarno G. Comparison Analysis of Wind Patterns and Its Correlations to Temperature, Humidity and Rainfall in Coastal and Non-Coastal Areas. EKSAKTA [Internet]. 2023Mar.30 [cited 2024May12];24(01):67-79. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/392

References

  1. Alayyannur, P. A., & Arini, S. Y. (2021). The relationship between work environment and occupational accidents among fishermen in Indonesian coastal areas. International Maritime Health, 72(3).
  2. Bagarello, V., Caltabellotta, G., & Iovino, M. (2021). Water transmission properties of a sandy-loam soil estimated with Beerkan runs differing by the infiltration time criterion. Journal of Hydrology and Hydromechanics, 69(2).
  3. Baran, Á., Lerch, S., el Ayari, M., & Baran, S. (2021). Machine learning for total cloud cover prediction. Neural Computing and Applications, 33(7).
  4. Barthelmie, R. J., Dantuono, K. E., Renner, E. J., Letson, F. L., & Pryor, S. C. (2021). Extreme wind and waves in U.S. east coast offshore wind energy lease areas. Energies, 14(4).
  5. Bhan, S. C., Bhowmik, S. K. R., & Sharma, R. V. (1994). An Objective Technique For Forecasting Wind Speed Over Bombay High Area. Mausam, 45(3).
  6. Cacciari, L. P., Amorim, A. C., Pássaro, A. C., Dumoulin, C., & Sacco, I. C. N. (2020). Intravaginal pressure profile of continent and incontinent women. Journal of Biomechanics, 99.
  7. Carrié, F. R., & Mélois, A. (2020). Modelling building airtightness pressurisation tests with periodic wind and sharp-edged openings. Energy and Buildings, 208.
  8. Computational of Distribution of Wind Speed as Preliminary Information for Fishers: Case Study in Lombok Sea. (2020). International Journal of Advanced Trends in Computer Science and Engineering, 9(3).
  9. Cossu, C. (2021). Evaluation of tilt control for wind-turbine arrays in the atmospheric boundary layer. Wind Energy Science, 6(3).
  10. Duraisamy, K., Iaccarino, G., & Xiao, H. (2019). Turbulence modeling in the age of data. In Annual Review of Fluid Mechanics (Vol. 51).
  11. Joshi, K., & Mandalia, S. (2020). Current Trends of Information Seeking Behaviour of Fishermen of Indian Coastal Area. Library Philosophy and Practice, 2020.
  12. Latumahina, F., & Mardiatmoko, G. (2021). Ants respon to air humadity in small Islands of Haruku. IOP Conference Series: Earth and Environmental Science, 755(1).
  13. Laurila, T. K., Sinclair, V. A., & Gregow, H. (2021). Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979–2018 based on ERA5. International Journal of Climatology, 41(4).
  14. Leal, P. B. C., Schrass, J. A., Giblette, T. N., Hunsaker, D. F., Shen, H., Logan, T. S., & Hartl, D. J. (2021). Effects of atmospheric profiles on sonic boom perceived level from supersonic vehicles. AIAA Journal, 59(12).
  15. Lesik, E. M., Sianturi, H. L., Geru, A. S., & Bernandus, B. (2020). Analisis Pola Hujan Dan Distribusi Hujan Berdasarkan Ketinggian Tempat Di Pulau Flores. Jurnal Fisika : Fisika Sains Dan Aplikasinya, 5(2).
  16. Mahmud, Z., Shiraishi, K., Abido, M. Y., Millstein, D., Sánchez-Pérez, P. A., & Kurtz, S. (2022). Geographical variability of summer-and winter-dominant onshore wind. Journal of Renewable and Sustainable Energy, 14(2).
  17. Purba, N. P., Faizal, I., Pangestu, I. F., Mulyani, P. G., & Fadhillah, M. F. (2018). Overview of physical oceanographic condition at Biawak Island: Past achievement and future challenge. IOP Conference Series: Earth and Environmental Science, 176(1).
  18. Qian, H., Walker, A., & Li, X. (2017). The west wind vs the east wind: instructional leadership model in China. Journal of Educational Administration, 55(2).
  19. Sahu, N., Panda, A., Nayak, S., Saini, A., Mishra, M., Sayama, T., Sahu, L., Duan, W., Avtar, R., & Behera, S. (2020). Impact of indo-pacific climate variability on high streamflow events in Mahanadi River Basin, India. Water (Switzerland), 12(7).
  20. Sfîcă, L., Beck, C., Nita, A. I., Voiculescu, M., Birsan, M. V., & Philipp, A. (2021). Cloud cover changes driven by atmospheric circulation in Europe during the last decades. International Journal of Climatology, 41(S1).
  21. Smirnov, I., & Mikhailova, N. (2021). An analysis of acoustic cavitation thresholds of water based on the incubation time criterion approach. Fluids, 6(4).
  22. Solick, D. I., & Newman, C. M. (2021). Oceanic records of North American bats and implications for offshore wind energy development in the United States. In Ecology and Evolution (Vol. 11, Issue 21).
  23. Souchet, J., Bossu, C., Darnet, E., le Chevalier, H., Poignet, M., Trochet, A., Bertrand, R., Calvez, O., Martinez-Silvestre, A., Mossoll-Torres, M., Guillaume, O., Clobert, J., Barthe, L., Pottier, G., Philippe, H., Gangloff, E. J., & Aubret, F. (2021). High temperatures limit developmental resilience to high-elevation hypoxia in the snake Natrix maura (Squamata: Colubridae). Biological Journal of the Linnean Society, 132(1).
  24. Stieren, A., Gadde, S. N., & Stevens, R. J. A. M. (2021). Modeling dynamic wind direction changes in large eddy simulations of wind farms. Renewable Energy, 170.
  25. Stringari, C. E., Prevosto, M., Filipot, J. F., Leckler, F., & Guimarães, P. v. (2021). A New Probabilistic Wave Breaking Model for Dominant Wind-Sea Waves Based on the Gaussian Field Theory. Journal of Geophysical Research: Oceans, 126(4).
  26. Suwarno, Hwai, L. J., Zambak, M. F., Nisja, I., & Rohana. (2017). Assessment of wind energy potential using weibull distribution function as wind power plant in Medan, North Sumatra. International Journal of Simulation: Systems, Science and Technology, 17(41).
  27. Swapp, S. M., Frost, C. D., Frost, B. R., & Fitz-Gerald, D. B. (2018). 2.7 Ga high-pressure granulites of the Teton Range: Record of Neoarchean continent collision and exhumation. Geosphere, 14(3).
  28. Trismidianto, & Satyawardhana, H. (2018). Mesoscale Convective Complexes (MCCs) over the Indonesian Maritime Continent during the ENSO events. IOP Conference Series: Earth and Environmental Science, 149(1).
  29. Tseng, Y. C., Lee, Y. M., & Liao, S. J. (2017). An integrated assessment framework of offshore wind power projects applying equator principles and social life cycle assessment. Sustainability (Switzerland), 9(10).
  30. Vijayan, L., Huang, W., Yin, K., Ozguven, E., Burns, S., & Ghorbanzadeh, M. (2021). Evaluation of parametric wind models for more accurate modeling of storm surge: a case study of Hurricane Michael. Natural Hazards, 106(3).
  31. Wang, J. W., Yang, H. J., & Kim, J. J. (2020). Wind speed estimation in urban areas based on the relationships between background wind speeds and morphological parameters. Journal of Wind Engineering and Industrial Aerodynamics, 205.
  32. Wisha, U. J., Hatmaja, R. B., Radjawane, I. M., & al Tanto, T. (2019). Correlation And Coherence Analysis Of Sea Surface Temperature (Sst) Distributed By The Surface Wind In West Sumatera Waters. Jurnal Meteorologi Dan Geofisika, 19(2).
  33. Zhang, H., Zhan, Y., Li, J., Chao, C. Y., Liu, Q., Wang, C., Jia, S., Ma, L., & Biswas, P. (2021). Using Kriging incorporated with wind direction to investigate ground-level PM2.5 concentration. Science of the Total Environment, 751.
  34. Zhi, W., Williams, K. H., Carroll, R. W. H., Brown, W., Dong, W., Kerins, D., & Li, L. (2020). Significant stream chemistry response to temperature variations in a high-elevation mountain watershed. Communications Earth and Environment, 1(1).