Main Article Content


Brown rice and black glutinous rice are rich in nutrients and fiber the body needs. The difference between brown and black glutinous rice lies in the starch content, namely amylose, and amylopectin, which can affect digestibility. Low digestibility rice can lower blood glucose levels, so it is needed for people with diabetes and obesity. This study modified brown rice and black glutinous rice with double modification HMT-crosslinking with citric acid and Crosslinking-HMT with various variations to determine the physicochemical properties and the lowest digestibility of brown rice and black glutinous rice. Multiple modifications can reduce digestibility, but a modification of HMT 25%-Crosslinking 20% showed the lowest digestibility in black glutinous rice. Differences in amylose and amylopectin levels in the sample can cause differences in the decrease in solubility and swelling power. The lowest solubility was found in brown rice with the HMT 25%-Crosslinking 20% variation, and the lowest swelling power in the brown rice sample with the HMT 25%-Crosslinking 20% variation. The formation of new covalent bonds after the crosslinking modification process can be identified by FTIR in the 1735 cm-1 regi


Digestibility Brown Black Glutinous Rice Heat Moisture Treatments Citric Acid Male

Article Details

How to Cite
Mawaddah A, Endang Saepudin, Tuti Wukirsari. Digestibility and Physicochemical Properties of Brown Rice and Black Glutinous Rice under a Combination of Heat-Moisture Treatments and Citric Acid. EKSAKTA [Internet]. 2023May25 [cited 2023Jun.6];24(02):249-58. Available from:


  1. Shao, Y., Xu, F., Sun, X., Bao, J., & Beta, T. (2014). Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). Journal of Cereal Science, 59(2), 211-218.
  2. Asgher, M., Ahmed, S., Sehar, Z., Gautam, H., Gandhi, S. G., & Khan, N. A. (2021). Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). Journal of Hazardous Materials, 401, 123365.
  3. El-Beltagi, H. S., Mohamed, H. I., Aldaej, M. I., Al-Khayri, J. M., Rezk, A. A., Al-Mssallem, M. Q., ... & Ramadan, K. M. (2022). Production and antioxidant activity of secondary metabolites in Hassawi rice (Oryza sativa L.) cell suspension under salicylic acid, yeast extract, and pectin elicitation. In Vitro Cellular & Developmental Biology-Plant, 58(4), 615-629.
  4. Raghuvanshi, K., Zell, D., & Ackermann, L. (2017). Ruthenium (II)-catalyzed C–H oxygenations of reusable sulfoximine benzamides. Organic letters, 19(6), 1278-1281.
  5. Bu, Q., Kuniyil, R., Shen, Z., Gońka, E., & Ackermann, L. (2020). Insights into Ruthenium (II/IV)‐Catalyzed Distal C− H Oxygenation by Weak Coordination. Chemistry–A European Journal, 26(69), 16450-16454.
  6. Ackermann, L. (2015). Robust ruthenium (II)-catalyzed C–H arylations: carboxylate assistance for the efficient synthesis of angiotensin-II-receptor blockers. Organic Process Research & Development, 19(1), 260-269.
  7. Quigley, D. A., Dang, H. X., Zhao, S. G., Lloyd, P., Aggarwal, R., Alumkal, J. J., ... & Feng, F. Y. (2018). Genomic hallmarks and structural variation in metastatic prostate cancer. Cell, 174(3), 758-769.
  8. Giordano, T. J. (2018). Genomic hallmarks of thyroid neoplasia. Annual Review of Pathology: Mechanisms of Disease, 13, 141-162.
  9. Yadav, I. C., Devi, N. L., Syed, J. H., Cheng, Z., Li, J., Zhang, G., & Jones, K. C. (2015). Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Science of the Total Environment, 511, 123-137.
  10. Mazlan, N., Ahmed, M., Muharam, F. M., & Alam, M. A. (2017). Status of persistent organic pesticide residues in water and food and their effects on environment and farmers: A comprehensive review in Nigeria. Semina: Ciências Agrárias, 38(4), 2221-2236.
  11. Han, M. A., Kim, J. H., & Song, H. S. (2019). Persistent organic pollutants, pesticides, and the risk of thyroid cancer: systematic review and meta-analysis. European Journal of Cancer Prevention, 28(4), 344-349.
  12. Lee, J. K., Kwak, S. W., Ha, J. H., Lee, W., & Kim, H. C. (2017). Physicochemical properties of epoxy resin-based and bioceramic-based root canal sealers. Bioinorganic chemistry and applications, 2017.
  13. Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R., & Finn, R. D. (2018). HMMER web server: 2018 update. Nucleic acids research, 46(W1), W200-W204.
  14. Bengtsson-Palme, J., Metaxa, F. A., Parsers, F. A., & Metaxa, F. A. (2020). Tag: HMMER. Update.
  15. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution, 24(8), 1596-1599.
  16. Wohlin, C., Mendes, E., Felizardo, K. R., & Kalinowski, M. (2020). Guidelines for the search strategy to update systematic literature reviews in software engineering. Information and software technology, 127, 106366.
  17. Yang, Z., Hao, H., Wu, Y., Liu, Y., & Ouyang, J. (2021). Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment. International Journal of Biological Macromolecules, 168, 656-662.
  18. Yang, W., Kong, X., Zheng, Y., Sun, W., Chen, S., Liu, D., ... & Ye, X. (2019). Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrasonics sonochemistry, 59, 104709.
  19. Park, E. Y., Ma, J. G., Kim, J., Lee, D. H., Kim, S. Y., Kwon, D. J., & Kim, J. Y. (2018). Effect of dual modification of HMT and crosslinking on physicochemical properties and digestibility of waxy maize starch. Food Hydrocolloids, 75, 33-40.
  20. Golshahi, M., Taslikh, M., Nayebzadeh, K., & Arjeh, E. (2023). Dual modification of normal corn starch by cross-linking and annealing: investigation of physicochemical, thermal, pasting, and morphological properties. Journal of Food Measurement and Characterization, 1-11.
  21. Yi, D., Maike, W., Yi, S., Xiaoli, S., Dianxing, W., & Wenjian, S. (2021). Physiochemical properties of resistant starch and its enhancement approaches in rice. Rice Science, 28(1), 31-42.
  22. Kim, H. R., Jeong, G. A., Bae, J. E., Hong, J. S., Choi, H. D., & Lee, C. J. (2022). Impact of chemical modification by immersion with malic acid on the physicochemical properties and resistant starch formation in rice. Journal of Food Science, 87(3), 1058-1068.
  23. Chung, H. J., Liu, Q., Lee, L., & Wei, D. (2011). Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloids, 25(5), 968-975.
  24. Vamadevan, V., & Bertoft, E. (2020). Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids, 103, 105663.
  25. Sampaio, P. S., Soares, A., Castanho, A., Almeida, A. S., Oliveira, J., & Brites, C. (2018). Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms. Food Chemistry, 242, 196-204.
  26. Shaikh, F., Ali, T. M., Mustafa, G., & Hasnain, A. (2019). Comparative study on effects of citric and lactic acid treatment on morphological, functional, resistant starch fraction and glycemic index of corn and sorghum starches. International Journal of Biological Macromolecules, 135, 314-327.
  27. Tian, S., & Sun, Y. (2020). Influencing factor of resistant starch formation and application in cereal products: A review. International Journal of Biological Macromolecules, 149, 424-431.
  28. Zhu, L. J., Liu, Q. Q., Wilson, J. D., Gu, M. H., & Shi, Y. C. (2011). Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohydrate Polymers, 86(4), 1751-1759.
  29. Duan, H., Tong, H., Zhu, A., Zhang, H., & Liu, L. (2020). Effects of heat, drought and their combined effects on morphological structure and physicochemical properties of rice (Oryza sativa L.) starch. Journal of Cereal Science, 95, 103059.
  30. Musa, A. S., Umar, M., & Ismail, M. (2011). Physicochemical properties of germinated brown rice (Oryza sativa L.) starch. African Journal of Biotechnology, 10(33), 6281-6291.
  31. Venkatesh Mane, R. S., Kiran, M. R., & Sanjay Eligar, A. B. (2015). An effective industry institute engagement for curriculum design and delivery: A success story. Journal of Engineering Education Transformations, 29(1).
  32. Mohamed, I. O. (2021). Effects of processing and additives on starch physicochemical and digestibility properties. Carbohydrate Polymer Technologies and Applications, 2, 100039.
  33. Aalim, H., Wang, D., & Luo, Z. (2021). Black rice (Oryza sativa L.) processing: Evaluation of physicochemical properties, in vitro starch digestibility, and phenolic functions linked to type 2 diabetes. Food Research International, 141, 109898.
  34. Hong, Y., He, J., Zhang, C., & Wang, X. (2022). Probing the structure of water at the interface with graphene oxide using sum frequency generation vibrational spectroscopy. The Journal of Physical Chemistry C, 126(3), 1471-1480.