Main Article Content


Research has been carried out on the ability of antibacterial activity with using Ag nanoparticles with a variation of the AgNO3 mole ratio of 0.5 mM and 1.5 mM as much as 90 ml and the amount of turi leaf extract added 1 mL. The material was characterized by UV-vis spectroscopy. Determination of antibacterial activity was carried out through Escherichia coli bacteria after interacting with nanoparticles Ag. Green synthesis of silver nanoparticles can be carried out using an aqueous extract of turi leaves, with the optimum concentration of 0.5 mM AgNO3 and 1.5 mM AgNO3 being synthesized for one day at room temperature. Resulting in silver nanoparticles with energy band gap values of 3.9 eV and 3.88 Ev having antibacterial activity of Escherichia coli with inhibitory power of 5.52 mm and 6.65 mm, respectively.


nanoparticles Ag, Green synthesis, turi leaves

Article Details

How to Cite
Amananti W, Riyantal AB, Kusnadi K. Green Synthesis and Antibacterial Activity of Silver Nanoparticles Using Turi Leaf Extract (Sesbania grandiflora L). EKSAKTA [Internet]. 2022Oct.25 [cited 2022Nov.29];23(04):253-61. Available from:


  1. A. Dashora, K. Rathore, S. Raj, and K. Sharma. (2022). Synthesis of silver nanoparticles employing Polyalthia longifolia leaf extract and their in vitro antifungal activity against phytopathogen, Biochem. Biophys. Reports, vol. 31, no. August, p. 101320.
  2. H. V. Tran et al. (2020). Silver nanoparticles-decorated reduced graphene oxide: A novel peroxidase-like activity nanomaterial for development of a colorimetric glucose biosensor,” Arab. J. Chem., vol. 13, no. 7, pp. 6084–6091.
  3. P. Dhingra et al. (2022). Seed priming with carbon nanotubes and silicon dioxide nanoparticles influence agronomic traits of Indian mustard (Brassica juncea) in field experiments, J. King Saud Univ. - Sci., vol. 34, no. 4, p. 102067.
  4. S. Skariyachan, D. Gopal, D. Deshpande, A. Joshi, A. Uttarkar, and V. Niranjan. (2021). Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies, Infect. Genet. Evol., vol. 96, p. 105155.
  5. J. Quinson. (2022). Colloidal surfactant-free syntheses of precious metal nanoparticles for electrocatalysis, Curr. Opin. Electrochem., vol. 34, p. 100977.
  6. A. Mokkarat, S. Kruanetr, and U. Sakee. (2022). One-step continuous flow synthesis of aminopropyl silica-coated magnetite nanoparticles, J. Saudi Chem. Soc., vol. 26, no 4, p. 101506.
  7. N. M. Alabdallah and M. M. Hasan. (2021). Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants,” Saudi J. Biol. Sci., vol. 28, no. 10, pp. 5631–5639.
  8. N. S. Alharbi, N. S. Alsubhi, and A. I. Felimban. (2022). Journal of Radiation Research and Applied Sciences Green synthesis of silver nanoparticles using medicinal plants : Characterization and application, J. Radiat. Res. Appl. Sci., vol. 15, no. 3, pp. 109–124.
  9. M. A. Sobi et al. (2022). Size dependent antimicrobial activity of Boerhaavia diffusa leaf mediated silver nanoparticles, J. King Saud Univ. - Sci., vol. 34, no. 5, p. 102096.
  10. D. S. Guerrero, R. P. Bertani, A. Ledesma, M. de los A. Frías, C. M. Romero, and J. S. Dávila Costa. (2022). Silver nanoparticles synthesized by the heavy metal resistant strain Amycolatopsis tucumanensis and its application in controlling red strip disease in sugarcane,” Heliyon, vol. 8, no. 5, p. e09472.
  11. S. Vinodhini, B. S. M. Vithiya, and T. A. A. Prasad. (2022). Green synthesis of silver nanoparticles by employing the Allium fistulosum, Tabernaemontana divaricate and Basella alba leaf extracts for antimicrobial applications, J. King Saud Univ. - Sci., vol. 34, no4, p. 101939.
  12. F. S. Al-khattaf. (2021). Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks, Saudi J. Biol. Sci., vol. 28, no. 6, pp. 3624–3631.
  13. M. Eltarahony, S. Zaki, Z. Kheiralla, and D. Abd-El-haleem. (2018). NAP enzyme recruitment in simultaneous bioremediation and nanoparticles synthesis, Biotechnol. Reports, vol. 18, p. e00257.
  14. D. M. S. A. Salem, M. M. Ismail, and M. A. Aly-Eldeen. (2019). Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt,” Egypt. J. Aquat. Res., vol. 45, no. 3, pp. 197–204.
  15. A. K. Singh. (2022). A review on plant extract-based route for synthesis of cobalt nanoparticles: Photocatalytic, electrochemical sensing and antibacterial applications,” Curr. Res. Green Sustain. Chem., vol. 5, no. January, p. 100270.
  16. D. R. A. Preethi and A. Philominal. (2022). Green Synthesis of Pure and Silver Doped Copper Oxide Nanoparticles using Moringa Oleifera Leaf Extract, Mater. Lett. X, vol. 13, p. 100122.
  17. J. Das, M. Paul Das, and P. Velusamy. (2013). Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 104, pp. 265–270.
  18. B. Ajitha, Y. Ashok Kumar Reddy, K. M. Rajesh, and P. Sreedhara Reddy. (2016). Sesbania grandiflora leaf extract assisted green synthesis of silver nanoparticles: Antimicrobial activity, Mater. Today Proc., vol. 3, no. 6, pp. 1977–1984.
  19. G. Assylbekova, H. Faris, and S. Yegemberdiyeva. (2022). Sunlight induced synthesis of silver nanoparticles on cellulose for the preparation of antimicrobial textiles,” J. Photochem. Photobiol., vol. 11, no. June, p. 100134.
  20. J. Jalab, W. Abdelwahed, A. Kitaz, and R. Al-Kayali. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity, Heliyon, vol. 7, no. 9, p. e08033.
  21. A. S. Agnihotri, N. M, S. Rison, A. K. B, and A. Varghese. (2021). Tuning of the surface structure of silver nanoparticles using Gum arabic for enhanced electrocatalytic oxidation of morin,” Appl. Surf. Sci. Adv., vol. 6, p. 100181.
  22. M. Reddi et al. (2022). Science Green synthesis and pharmacological applications of silver nanoparticles using ethanolic extract of Salacia chinensis L .,” J. King Saud Univ. - Sci., vol. 34, no. 7, p. 102284.
  23. S. Jyoti, G. Chakraborty, V. Chauhan, L. Singh, V. Singh, and V. Kumar. (2022). Development of a predictive model for determination of urea in milk using silver nanoparticles and UV – Vis spectroscopy, LWT, vol. 168, no. August, p. 113893.
  24. W. T. J. Ong and K. L. Nyam. (2022). Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications, Saudi J. Biol. Sci., vol. 29, no. 4, pp. 2085–2094.
  25. A. Wasilewska, U. Klekotka, M. Zambrzycka, G. Zambrowski, and I. Swi. (2022). Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis,” vol. 400, no. January 2022.