Main Article Content

Abstract

Research has been carried out on the ability of antibacterial activity with using Ag nanoparticles with a variation of the AgNO3 mole ratio of 0.5 mM and 1.5 mM as much as 90 ml and the amount of turi leaf extract added 1 mL. The material was characterized by UV-vis spectroscopy. Determination of antibacterial activity was carried out through Escherichia coli bacteria after interacting with nanoparticles Ag. Green synthesis of silver nanoparticles can be carried out using an aqueous extract of turi leaves, with the optimum concentration of 0.5 mM AgNO3 and 1.5 mM AgNO3 being synthesized for one day at room temperature. Resulting in silver nanoparticles with energy band gap values of 3.9 eV and 3.88 Ev having antibacterial activity of Escherichia coli with inhibitory power of 5.52 mm and 6.65 mm, respectively.


  

Keywords

Ag Nanoparticles, green synthesis, turi leaves

Article Details

How to Cite
1.
Amananti W, Riyantal AB, Kusnadi K, Aledresi KAMS. Green Synthesis and Antibacterial Activity of Silver Nanoparticles using Turi (Sesbania grandiflora Lour) Leaf Extract . EKSAKTA [Internet]. 2022Dec.30 [cited 2024Apr.25];23(04):255-6. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/337

References

  1. A. Dashora, K. Rathore, S. Raj, and K. Sharma. (2022). Synthesis of silver nanoparticles employing Polyalthia longifolia leaf extract and their in vitro antifungal activity against phytopathogen. Biochem. Biophys. Reports, vol. 31, no. August, p. 101320.
  2. Hemagirri, M., & Sasidharan, S. (2022). In vitro antiaging activity of polyphenol rich Polyalthia longifolia (Annonaceae) leaf extract in Saccharomyces cerevisiae BY611 yeast cells. Journal of ethnopharmacology, 290, 115110.
  3. Firdous, S. M., Ahmed, S. N., Hossain, S. M., Ganguli, S., & Fayed, M. A. (2022). Polyalthia longifolia: phytochemistry, ethnomedicinal importance, nutritive value, and pharmacological activities review. Medicinal Chemistry Research, 1-13.
  4. H. V. Tran et al. (2020). Silver nanoparticles-decorated reduced graphene oxide: A novel peroxidase-like activity nanomaterial for development of a colorimetric glucose biosensor. Arab. J. Chem., vol. 13, no. 7, pp. 6084–6091.
  5. Nia, P. M., Lorestani, F., Meng, W. P., & Alias, Y. (2015). A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites. Applied Surface Science, 332, 648-656.
  6. P. Dhingra et al. (2022). Seed priming with carbon nanotubes and silicon dioxide nanoparticles influence agronomic traits of Indian mustard (Brassica juncea) in field experiments. J. King Saud Univ. - Sci., vol. 34, no. 4, p. 102067.
  7. Singh, M., Avtar, R., Kumar, N., Punia, R., Pal, A., Lakra, N., ... & Singh, V. K. (2022). Genetic Analysis for Resistance to Sclerotinia Stem Rot, Yield and Its Component Traits in Indian Mustard [Brassica juncea (L.) Czern & Coss.]. Plants, 11(5), 671.
  8. S. Skariyachan, D. Gopal, D. Deshpande, A. Joshi, A. Uttarkar, and V. Niranjan. (2021). Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Infect. Genet. Evol., vol. 96, p. 105155.
  9. Meng, F., Wang, S., Jiang, B., Ju, L., Xie, H., Jiang, W., & Ji, Q. (2022). Coordinated regulation of phosphorus/nitrogen doping in fullerene-derived hollow carbon spheres and their synergistic effect for the oxygen reduction reaction. Nanoscale, 14(29), 10389-10398.
  10. Peng, B. (2022). Monolayer fullerene networks as photocatalysts for overall water splitting. Journal of the American Chemical Society, 144(43), 19921-19931.
  11. J. Quinson. (2022). Colloidal surfactant-free syntheses of precious metal nanoparticles for electrocatalysis. Curr. Opin. Electrochem., vol. 34, p. 100977.
  12. Wang, S., Yang, X., Li, Y., Gao, B., Jin, S., Yu, R., ... & Tang, Y. (2022). Colloidal magnesium hydroxide Nanoflake: One-Step Surfactant-Assisted preparation and Paper-Based relics protection with Long-Term Anti-Acidification and Flame-Retardancy. Journal of Colloid and Interface Science, 607, 992-1004.
  13. A. Mokkarat, S. Kruanetr, and U. Sakee. (2022). One-step continuous flow synthesis of aminopropyl silica-coated magnetite nanoparticles. J. Saudi Chem. Soc., vol. 26, no 4, p. 101506.
  14. Silviana, S., Janitra, A. A., Sa’adah, A. N., & Dalanta, F. (2022). Synthesis of aminopropyl-functionalized mesoporous silica derived from geothermal silica for an effective slow-release urea carrier. Industrial & Engineering Chemistry Research, 61(26), 9283-9299.
  15. N. M. Alabdallah and M. M. Hasan. (2021). Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J. Biol. Sci., vol. 28, no. 10, pp. 5631–5639.
  16. Erenler, R., & Geçer, E. N. (2022). Green synthesis of silver nanoparticles from Astragalus logopodioides L. leaves. Turkish Journal of Agriculture-Food Science and Technology, 10(6), 1112-1115.
  17. Nadaf, S. J., Jadhav, N. R., Naikwadi, H. S., Savekar, P. L., Sapkal, I. D., Kambli, M. M., & Desai, I. A. (2022). Green Synthesis of Gold and Silver Nanoparticles: Updates on Research, Patents, and Future Prospects. OpenNano, 100076.
  18. Habeeb Rahuman, H. B., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R., Subbarayalu, R., ... & Muthupandian, S. (2022). Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET nanobiotechnology, 16(4), 115-144.
  19. N. S. Alharbi, N. S. Alsubhi, and A. I. Felimban. (2022). Journal of Radiation Research and Applied Sciences Green synthesis of silver nanoparticles using medicinal plants : Characterization and application. J. Radiat. Res. Appl. Sci., vol. 15, no. 3, pp. 109–124.
  20. Oves, M., Rauf, M. A., Aslam, M., Qari, H. A., Sonbol, H., Ahmad, I., ... & Saeed, M. (2022). Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi journal of biological sciences, 29(1), 460-471.
  21. M. A. Sobi et al. (2022). Size dependent antimicrobial activity of Boerhaavia diffusa leaf mediated silver nanoparticles. J. King Saud Univ. - Sci., vol. 34, no. 5, p. 102096.
  22. Abdel-Moneim, A. M. E., El-Saadony, M. T., Shehata, A. M., Saad, A. M., Aldhumri, S. A., Ouda, S. M., & Mesalam, N. M. (2022). Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences, 29(2), 1197-1209.
  23. D. S. Guerrero, R. P. Bertani, A. Ledesma, M. de los A. Frías, C. M. Romero, and J. S. Dávila Costa. (2022). Silver nanoparticles synthesized by the heavy metal resistant strain Amycolatopsis tucumanensis and its application in controlling red strip disease in sugarcane. Heliyon, vol. 8, no. 5, p. e09472.
  24. S. Vinodhini, B. S. M. Vithiya, and T. A. A. Prasad. (2022). Green synthesis of silver nanoparticles by employing the Allium fistulosum, Tabernaemontana divaricate and Basella alba leaf extracts for antimicrobial applications. J. King Saud Univ. - Sci., vol. 34, no4, p. 101939.
  25. Medina-Jaramillo, C., Gomez-Delgado, E., & López-Córdoba, A. (2022). Improvement of the Ultrasound-Assisted Extraction of Polyphenols from Welsh Onion (Allium fistulosum) Leaves Using Response Surface Methodology. Foods, 11(16), 2425.
  26. F. S. Al-khattaf. (2021). Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi J. Biol. Sci., vol. 28, no. 6, pp. 3624–3631.
  27. Nazeer, M., Ramesh, K., Farooq, H., & Shahzad, Q. (2022). Impact of gold and silver nanoparticles in highly viscous flows with different body forces. International Journal of Modelling and Simulation, 1-17.
  28. M. Eltarahony, S. Zaki, Z. Kheiralla, and D. Abd-El-haleem. (2018). NAP enzyme recruitment in simultaneous bioremediation and nanoparticles synthesis, Biotechnol. Reports, vol. 18, p. e00257.
  29. Hladnik, L., Vicente, F. A., Grilc, M., & Likozar, B. (2022). β-Carotene production and extraction: A case study of olive mill wastewater bioremediation by Rhodotorula glutinis with simultaneous carotenoid production. Biomass Conversion and Biorefinery, 1-9.
  30. D. M. S. A. Salem, M. M. Ismail, and M. A. Aly-Eldeen. (2019). Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. Egypt. J. Aquat. Res., vol. 45, no. 3, pp. 197–204.
  31. Fagiano, V., Alomar, C., Compa, M., Soto-Navarro, J., Jordá, G., & Deudero, S. (2022). Neustonic microplastics and zooplankton in coastal waters of Cabrera marine protected area (Western Mediterranean Sea). Science of The Total Environment, 804, 150120.
  32. A. K. Singh. (2022). A review on plant extract-based route for synthesis of cobalt nanoparticles: Photocatalytic, electrochemical sensing and antibacterial applications. Curr. Res. Green Sustain. Chem., vol. 5, no. January, p. 100270.
  33. Raghupathy, D. A., Ramgopal, G., & Ravikumar, C. R. (2022). Photocatalytic degradation of direct green & fast orange red dyes: Electrochemical sensor of lead using cupric oxide nanoparticles synthesized via sonochemical route. Sensors International, 3, 100204.
  34. D. R. A. Preethi and A. Philominal. (2022). Green Synthesis of Pure and Silver Doped Copper Oxide Nanoparticles using Moringa Oleifera Leaf Extract. Mater. Lett. X, vol. 13, p. 100122.
  35. Mashamaite, C. V., Ngcobo, B. L., Manyevere, A., Bertling, I., & Fawole, O. A. (2022). Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review. Plants, 11(17), 2214.
  36. J. Das, M. Paul Das, and P. Velusamy. (2013). Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 104, pp. 265–270.
  37. Mumtaz, S., Ali, S., Mumtaz, S., Mughal, T. A., Tahir, H. M., & Shakir, H. A. (2022). Chitosan conjugated silver nanoparticles: the versatile antibacterial agents. Polymer Bulletin, 1-18.
  38. B. Ajitha, Y. Ashok Kumar Reddy, K. M. Rajesh, and P. Sreedhara Reddy. (2016). Sesbania grandiflora leaf extract assisted green synthesis of silver nanoparticles: Antimicrobial activity. Mater. Today Proc., vol. 3, no. 6, pp. 1977–1984.
  39. Al-Ramamneh, E. A. D. M., Ghrair, A. M., Shakya, A. K., Alsharafa, K. Y., Al-Ismail, K., Al-Qaraleh, S. Y., ... & Naik, R. R. (2022). Efficacy of Sterculia diversifolia leaf extracts: volatile compounds, antioxidant and anti-Inflammatory activity, and green synthesis of potential antibacterial silver nanoparticles. Plants, 11(19), 2492.
  40. Campo‐Beleño, C., Villamizar‐Gallardo, R. A., López‐Jácome, L. E., González, E. E., Muñoz‐Carranza, S., Franco, B., ... & García‐Contreras, R. (2022). Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug‐resistant Pseudomonas aeruginosa. Letters in Applied Microbiology, 75(3), 680-688.
  41. G. Assylbekova, H. Faris, and S. Yegemberdiyeva. (2022). Sunlight induced synthesis of silver nanoparticles on cellulose for the preparation of antimicrobial textiles. J. Photochem. Photobiol., vol. 11, no. June, p. 100134.
  42. Zhao, Z. Y., Li, P. J., Xie, R. S., Cao, X. Y., Su, D. L., & Shan, Y. (2022). Biosynthesis of silver nanoparticle composites based on hesperidin and pectin and their synergistic antibacterial mechanism. International Journal of Biological Macromolecules, 214, 220-229.
  43. J. Jalab, W. Abdelwahed, A. Kitaz, and R. Al-Kayali. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity, Heliyon, vol. 7, no. 9, p. e08033.
  44. Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13), 7202.
  45. A. S. Agnihotri, N. M, S. Rison, A. K. B, and A. Varghese. (2021). Tuning of the surface structure of silver nanoparticles using Gum arabic for enhanced electrocatalytic oxidation of morin. Appl. Surf. Sci. Adv., vol. 6, p. 100181.
  46. Kanniah, P., Chelliah, P., Thangapandi, J. R., Gnanadhas, G., Mahendran, V., & Robert, M. (2021). Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. International Journal of Biological Macromolecules, 189, 18-33.
  47. M. Reddi et al. (2022). Science Green synthesis and pharmacological applications of silver nanoparticles using ethanolic extract of Salacia chinensis L. J. King Saud Univ. - Sci., vol. 34, no. 7, p. 102284.
  48. Abdellatif, A. A., Alturki, H. N., & Tawfeek, H. M. (2021). Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities. Scientific reports, 11(1), 1-18.
  49. S. Jyoti, G. Chakraborty, V. Chauhan, L. Singh, V. Singh, and V. Kumar. (2022). Development of a predictive model for determination of urea in milk using silver nanoparticles and UV – Vis spectroscopy, LWT, vol. 168, no. August, p. 113893.
  50. Xiao, X., He, E. J., Lu, X. R., Wu, L. J., Fan, Y. Y., & Yu, H. Q. (2021). Evaluation of antibacterial activities of silver nanoparticles on culturability and cell viability of Escherichia coli. Science of The Total Environment, 794, 148765.
  51. W. T. J. Ong and K. L. Nyam. (2022). Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J. Biol. Sci., vol. 29, no. 4, pp. 2085–2094.
  52. Qamer, S., Romli, M. H., Che-Hamzah, F., Misni, N., Joseph, N. M., Al-Haj, N. A., & Amin-Nordin, S. (2021). Systematic Review on Biosynthesis of Silver Nanoparticles and Antibacterial Activities: Application and Theoretical Perspectives. Molecules, 26(16), 5057.
  53. A. Wasilewska, U. Klekotka, M. Zambrzycka, G. Zambrowski, and I. Swi. (2022). Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. vol. 400, no. January 2022.
  54. Behbudi, G. (2021). Effect of silver nanoparticles disinfectant on covid-19. Advances in Applied NanoBio-Technologies, 2(2), 63-67.
  55. Ardjoum, N., Shankar, S., Chibani, N., Salmieri, S., & Lacroix, M. (2021). In situ synthesis of silver nanoparticles in pectin matrix using gamma irradiation for the preparation of antibacterial pectin/silver nanoparticles composite films. Food Hydrocolloids, 121, 107000.
  56. Raza, S., Ansari, A., Siddiqui, N. N., Ibrahim, F., Abro, M. I., & Aman, A. (2021). Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system. Scientific Reports, 11(1), 1-15.