Main Article Content

Abstract

Lead has been known as one of the heavy metals with a high adverse effect to the environment and human health. This study reports the activity of activated carbon from biomass of banana peel as an adsorbent to resolve the hazardous lead-contaminated wastewater. The influence of the activator was studied via the alteration of NaOH concentration from 1, 3, and 5 M, where the sample was denoted as AC-1, AC-3, and AC-5. Some techniques, including FTIR, XRD, and SEM were applied to characterize the sample with the highest adsorption capacity. FTIR result affirmed the presence of hydroxyl group on the activated carbon with NaOH 1 M (AC-1) that was beneficial for adsorption. XRD and SEM confirmed that the activated carbon possessed crystalline and amorphous phases with sheet-like morphology. Regarding Pb(II) adsorption, the higher concentration of activator caused the decline of adsorption capacity as the contact time prolonged. The highest adsorption capacity and efficiency were obtained using 1 M NaOH activator with a contact time of 1 hour, which was 3.71 mg/gram and 97.86%, respectively.

Keywords

Activated carbon, NaOH activator, banana peel, adsorption

Article Details

How to Cite
1.
Hamid A, Rahmawati Z, Abdullah M, Purbaningtyas TE, Rohmah F, Febriana ID. The Influence of NaOH Activator Concentration on the Synthesis of Activated Carbon from Banana Peel for Pb(II) Adsorption. EKSAKTA [Internet]. 2022Sep.30 [cited 2024Mar.29];23(03):158-66. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/323

References

  1. Jessica, B., EmmanuelS., and Renald, B. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), 04691.
  2. Zijun, Y., Jun, H., Jun, W., Lingzhan M. (2021). The effect of carbonization temperature on the capacity and mechanisms of Pb(II) adsorption by microalgae residue-derived biochar. Ecotoxicol. Environ. Saf., 225, 112750.
  3. Tri W., Teti, Y., Agung, A.S., Adsorpsi Logam Berat (Pb) dari Limbah Cair dengan Adsorben Arang Bambu Aktif. Jurnal Teknologi Bahan Alam, 1(1), 17–23.
  4. Tekin, S. (2019). Application of RSM for Pb(II) and Cu(II) adsorption by bentonite enriched with [sbnd]SH groups and a binary system study. J. Water Process Eng, 31, 100867.
  5. Huynh, T. M. T., Tran, T. T. P., Phan, T. L. H., Tran, T. T. T., Tran, N. T., Tran, X. M., Dinh, Q. K. (2018). Comparative study of Pb(II) adsorption onto MIL-101 and Fe-MIL-101 from aqueous solutions. J. Environ. Chem. Eng, 6(4), 4093–4102.
  6. Saad, M. (2022). Novel carbazole-based porous organic frameworks (CzBPOF) for efficient removal of toxic Pb(II) from water: Synthesis, characterization, and adsorption studies,” Environ. Technol. Innov, 25, 102172.
  7. Ulfa, M. A., Abu, H., Indah., P. (2021). Kinetika Adsorpsi Karbon Aktif Dalam Penurnan Konsentrasi Logam Tembaga ( Cu ) Dan Timbal ( Pb ). Jurnal Kinetika, 12(02), 29–37.
  8. Anna, K., Rifaqat, A. K. R. Efficient Cu(II) adsorption from aqueous medium using organic-inorganic nanocomposite material. Groundw. Sustain. Dev., 9, 100214.
  9. Syed, M. H., Umar, A., Azra, Y., Faisal, S., Naseem, A. (2020). Recent trends of MnO2-derived adsorbents for water treatment: a review,” New J. Chem., 44, 6096–6120.
  10. Kalu, S. U., Kumar, P., Ruben, S., Edward, A., Sachin, M. (2019). A review of chemicals to produce activated carbon from agricultural waste biomass. Sustainability, 11(22), 1–35.
  11. Seyyedeh, M. K., Mohsen, S., Motjaba, J., Tobias, R., Anita, P., Nourollah, M. (2021). Pretreatment of lignocellulosic waste as a precursor for synthesis of high porous activated carbon and its application for Pb (II) and Cr (VI) adsorption from aqueous solutions. Int. J. Biol. Macromol., 180, 299–310.
  12. Yantus, A. B. N., Yosep, L., Johnson, N., Arsel, A. P. R., Handoko, D., Bernadeta, A. W., Munawar, I., Heri, s. K. (2021). Indonesian Kesambi wood (Schleichera oleosa) activated with pyrolysis and H2SO4 combination methods to produce mesoporous activated carbon for Pb(II) adsorption from aqueous solution. Environ. Technol. Innov., 24, 101997.
  13. Teong, C. Q., Setiabudi, H.D., ,El-Arish, N. A. S., Bahari, M. B., The, L. P. (2019). Vatica rassak wood waste-derived activated carbon for effective Pb(II) adsorption: Kinetic, isotherm and reusability studies. Mater. Today Proc., 42, 165–171.
  14. Hasan, M. A., Hadi, M. M., Maha, G. B., Ezzat, M. S. (2017). Eriochrome Blue Black modified activated carbon as solid phase extractor for removal of Pb(II) ions from water samples. Arab. J. Chem., 10, S1955–S1962.
  15. Junaid, S., Usman, B. S., Mouhammad, H., Hamish, M., Gordon, M. (2019). Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefinery, 9(4), 775–802.
  16. Méndez, A., Álvarez, M. L., Fidalgo, J. M., Di Stasi, C., Manyà, J. J., Gascó, G. (2022). Biomass-derived activated carbon as catalyst in the leaching of metals from a copper sulfide concentrate. Miner. Eng, 183, 107594.
  17. James, M. I., Brian, R., Paul, T. W. (2022). Understanding the mechanism of two-step pyrolysis-alkali chemical activation of fibrous biomass for the production of activated carbon fibre matting. Fuel Process. Technol, 235, 107348.
  18. Chairunnisa., Frantisek, M., Takahiko, M., Kyaw, T., Jin, M., Koji, N., Agung, T. W., Fitria, R. (2021). Development of biomass based-activated carbon for adsorption dehumidification. Energy Reports, 7, 5871–5884.
  19. Saadia, M. W., Ahmad, M. E., Weam, M. A., Fathi, s. A. (2021). Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon. J. Saudi Chem. Soc, 25(8), 101296.
  20. Tri, W., Didik, P., Suprapto., Imroatul, Q., Hasliza, B., Ahmad, D., Sugeng T., Aishah, A. J. (2019). Direct synthesis of sodalite from Indonesian kaolin for adsorption of Pb2+ solution, kinetics, and isotherm approach. Bull. Chem. React. Eng. & Catal, 14(3), 502–512.
  21. Nurfitria, N., Febriyatiningrum, K., Utomo, W. P., Nugraheni, Z. V., Pangastuti, D. D., Maulida, H., Ariyanti, F. N. (2019). Pengaruh Konsentrasi Aktivator Kalium Hidroksida (KOH) pada Karbon Aktif dan Waktu Kontak Terhadap Daya Adsorpsi Logam Pb dalam Sampel Air Kawasan Mangrove Wonorejo, Surabaya. Akta Kim. Indones., 4(1), 75-85.
  22. Abdul, H., Didik, P., Tri, E. P., Faizatur, R., Ike, D. F. (2020). Pengaruh Tahap Kristalisasi pada Sintesis ZSM-5 Mesopori dari Kaolin Alam. Indonesian Journal of Chemical Analysis, 03(02), 40–49.
  23. Mansooreh, S., Tahereh, K. (2014). Low-Cost Adsorbents from Agricultural By- Products Impregnated with Phosphoric Acid. Adv. Chem. Eng. Res., 3, 34-41.
  24. Yang, H., Shunxing, L., Jianhua, C., Xueliang, Z., Yiping, C. (2014). Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H 3 PO 4 activation: Adsorption capacity, kinetic and isotherm studies. Appl. Surf. Sci., 293, 160–168.
  25. Haniyeh, E., Mohammad, Z. (2020). Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina. Mater. Chem. Phys, 248, 122893.
  26. Jasmina, N., Aleksandra, T., Malcolm, W., Snezana, M., Marko, S., Tatjana, M., Jasmina, A. (2019). Arsenic removal from water by green synthesized magnetic nanoparticles. Water (Switzerland), 11(12), 1-18.