Main Article Content

Abstract

Phasey bean (Macroptilium lathyroides) and siratro (Macroptilium atropurpureum) are introduced legumes that become a common species in pastureland. The nutritional content of these legumes has been explored, but on the contrary the anatomical study. The anatomical trait, especially in leaf epidermal, have been used to increase the understanding in taxonomy. This study aimed to investigate the leaf epidermal variability among phasey bean and siratro. The method used longitudinal section for upper and lower epidermal, then stained in safranin 0,1%. The results show that the upper epidermal in phasey bean have polygonal epidermal cell, while the lower part and the both part of siratro have irregular-shaped. The type of stomata in upper epidermal of phasey bean is paracytic and the lower epidermal is paracytic and anomocytic. Both epidermal sides in siratro have paracytic and anomocytic stomata. The index of stomata in phasey bean is higher than the siratro, but the index of trichomes in phasey bean is lower than siratro. The trichomes only absent in upper epidermal of phasey bean. Both plants have a similar types of trichomes: capitate glandular trichomes and linear non-glandular trichomes.

Keywords

anatomical comparison anomocytic paracytic stomata trichomes

Article Details

How to Cite
1.
Wijaya IMS, Kriswiyanti E. Leaf Epidermal Comparison of Phasey Bean (Macroptilium lathyroides) and Siratro (Macroptilium atropurpureum). EKSAKTA [Internet]. 2022Jun.30 [cited 2024Nov.5];23(02):78-87. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/317

References

  1. Cook, B. G., Pengelly B. C., Brown, S. D., Donnelly, J. L., Eagles, D. A., Franco, M. A., Hanson, J., Mullen, B. F., Partridge I. J., Peters, M., & Schultze-Kraft, R. (2005). Tropical forages. CSIRO, DPI&F(Qld), CIAT and ILRI. Brisbane
  2. Heuzé, V., Tran, G., Hassoun, P., and Lebas, F. (2015). Siratro (Macroptilium atropurpureum). Feedipedia INRAE, CIRAD, AFZ and FAO.
  3. Zhao, H., Xiao, M., Zhong, Y., and Wang, Y. (2022). Leaf epidermal micromorphology of Zingiber ( Zingiberaceae ) from China and its systematic significance. PhytoKeys, 190, 131–146.
  4. Gang, Z., Liu, B., Rohwer, J. G., Ferguson, D. K., & Yang, Y. (2021). Leaf epidermal micromorphology defining the clades in Cinnamomum (Lauraceae). PhytoKeys, 182, 125–148.
  5. Zhang, F.-P., Murphy, M. R. C., Cardoso, A. A., Jordan, G. J., & Brodribb, T. J. (2018). Similar geometric rules govern the distribution of veins and stomata in petals , sepals and leaves. New Phytologist, 219, 1224–1234.
  6. Shah, S. N., Celik, A., Ahmad, M., Ullah, F., Zaman, W., Zafar, M., Malik, K., Rashid, N., Iqbal, M., Sohail, A., & Bahadur, S. (2018). Leaf epidermal micromorphology and its implications in systematics of certain taxa of the fern family Pteridaceae from Northern Pakistan. Microscopy Research & Technique, 1–16.
  7. Ullah, F., Zafar, M., Amhad, M., Sultana, S., Ullah, A., Shah, S. N., Butt, M. A., & Mir, S. (2018). Taxonomic implications of foliar epidermal characteristics in subfamily Alsinoideae (Caryophyllaceae). Flora, 242, 31–44.
  8. Ercan, F. E. Z., Mikola, J., Silfver, T., Myller, K., Vainio, E., Słowinska, S., Slowinski, M., Lamentowicz, M., Blok, D., & Wagner-cremer, F. (2021). Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range. PLoS ONE, 16(5), 1–12.
  9. Zagoto, A. D. P., & Violita, V. (2019). Leaf Anatomical Modification in Drought of Rice Varieties (Oryza sativa L.). Eksakta : Berkala Ilmiah Bidang MIPA, 20(2), 42–52.
  10. Ali, M., Bahadur, S., Hussain, A., Saeed, S., Khuram, I., Ullah, M., Shao, J-W., & Akhtar, N. (2020). Foliar epidermal micromorphology and its taxonomic significance in Polygonatum (Asparagaceae) using scanning electron microscopy. Microscopy Research & Technique, 3, 1–10.
  11. Gul, S., Ahmad, M., Zafar, M., Bahadur, S., Celep, F., Sultana, S., Begum, N., Zaman, W., Shuaib, M., & Ayaz, A. (2019). Taxonomic significance of foliar epidermal morphology in Lamiaceae from Pakistan. Microscopy Research & Technique, 5, 1–22.
  12. Rashid, N., Zafar, M., Ahmad, M., Khan, M. A., Malik, K., Sultana, S., & Shah, S. N. (2018). Taxonomic significance of leaf epidermis in tribe Trifolieae L. (Leguminosae; Papilionoideae) in Pakistan. Plant Biosystems, 3504, 1–11.
  13. Nugroho, L. H., Sutikno, Susandarini, R., Yuliati, I. R., Priyono, Y., Munawaroh, E., & Astuti, I. P. (2019). Comparative leaf and stem anatomy of ten Piper species from Indonesia. Asian Journal of Agriculture and Biology, 7(3), 434–441.
  14. Liu, C., Li, Y., Xu, L., Li, M., Wang, J., Yan, P., & He, N. (2021). Stomatal Arrangement Pattern: A New Direction to Explore Plant Adaptation and Evolution. Frontiers in Plant Science, 12, 1–7.
  15. Sapala, A., Runions, A., & Smith, R. S. (2018). Mechanics, geometry and genetics of epidermal cell shape regulation: different pieces of the same puzzle. Current Opinion in Plant Biology, 47, 1–8.
  16. Vofely, R. V, Gallagher, J., Pisano, G. D., Bartlett, M., & Braybrook, S. A. (2019). Of puzzles and pavements: a quantitative exploration of leaf epidermal cell shape. New Phytologist, 221, 540–552.
  17. Sampaio, V. S., Araújo, N. D., & Agra, M. F. (2014). Characters of leaf epidermis in Solanum (clade Brevantherum) species from Atlantic Forest of Northeastern Brazil. South African Journal of Botany, 94, 108–113.
  18. Sapala, A., Runions, A., Routier-Kierzkowska, A. L., Gupta, M. Das, Hong, L., Hofhuis, H., Verger, S., Mosca, G., Li, C. B., Hay, A., Hamant, O., Roeder, A. H. K., Tsiantis, M.., Prusinkiewicz, P., & Smith, R. S. (2018). Why plants make puzzle cells, and how their shape emerges. eLife, 7, 1–32.
  19. Time, A., & Acevedo, E. (2021). Effects of Water Deficits on Prosopis tamarugo Growth , Water Status and Stomata Functioning. Plants, 10(53), 1–11.
  20. Gray, A., Liu, L., & Facette, M. (2020). Flanking Support: How Subsidiary Cells Contribute to Stomatal Form and Function. Frontiers in Plant Science, 11, 1–12.
  21. Nunes, T. D. G., Zhang, D., & Raissig, M. T. (2020). Form, development and function of grass stomata. The Plant Journal, 101(4), 780–799.
  22. Richardson, F., Brodribb, T. J., & Jordan, G. J. (2017). Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiology, 37(7), 869–878.
  23. Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., & Bresta, P. (2020). Protective and defensive roles of non ‑ glandular trichomes against multiple stresses: structure – function coordination. Journal of Forestry Research, 31, 1–12.
  24. Schuurink, R., & Tissier, A. (2020). Glandular trichomes: micro-organs with model status? New Phytologist, 225(6), 2251–2266.