Main Article Content

Abstract

This research aimed to analyze the characterization of biodegradable plastic nata de soya (NDS). The addictive substance used to manufacture this plastic is a mixture of glycerol and palm oil with a saturated solution of arabic gum as an emulsifier. The volume variations are A (10:5:15) mL, B (10:10:30) mL, C (10:15:45) mL, control is (10 mL of 3% glycerol) and soaking time for NDS sheets with additives are 4, 6, and 8 days. The results showed that the highest degradation power of NDS is 87% in the variation of additive C with an immersion period of 8 days had a degree of crystallinity of 8.075%. The water resistance test was 318% in an immersion of NDS plastic with a variation of C for four days had a degree of crystallinity of 12.47%. The highest tensile strength value of plastic was 23.459 MPa in the composition of additive C with four days of immersion and had a degree of crystallinity of 13.172%.

Keywords

NDS biodegradable plastic addictive substances glycerol palm oil

Article Details

How to Cite
1.
Iryani I, Iswendi I, Benti Etika S, Devira C, Fadila Putra R. Characterization of Biodegradable Plastic Nata De Soya Using Glycerol and Palm Oil Addictive Substances . EKSAKTA [Internet]. 2021Sep.30 [cited 2024Apr.18];22(3):211-9. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/285

References

  1. R. Geyer, J. R. Jambeck, and K. L. Law. (2017) Production, use, and fate of all plastics ever made. Sci. Adv., vol. 3, p. 1700782.
  2. A. Elahi, D. A. Bkhari, S. Shani, and A. Rehman. (2021) Plastics degradation by microbes: A sustainable approach. J. King Saud Univ., p. 101538.
  3. L. Piergiovanni and S. Limbo. (2016) Food packaging materials. Basel, Swiss: Springer.
  4. M. Maryati, I. Iryani, and F. Amelia. (2016) Karakterisasi plastik biodegradable Nata de Soya menggunakan Plasticizer Asam Oleat. Sainstek J. Sains dan Teknol., vol. 6, no. 1, pp. 65–70.
  5. B. R. Widiatmono, A. A. Sulianto, and C. Debora. (2021) Biodegradabilitas Bioplastik Berbahan Dasar Limbah Cair Tahu dengan Penguat Kitosan dan Plasticizer Gliserol. J. Sumberd. Alam dan Lingkung., vol. 8, no. 1, pp. 21–27, 2021, doi: 10.21776/ub.jsal.008.01.3.
  6. C. Calvino, N. Macke, R. Kato, and S. J. Rowan. (2020) Development, processing and applications of bio-sourced cellulose nanocrystal composites,” in Progress in Polymer Science, vol. 103, p. 101221.
  7. R. Geyer, J. R. Jambeck, and K. L. Law. (2017) Production, use, and fate of all plastics ever made. in Science advances, vol. 3, no. 7, p. e1700782.
  8. N. Singh, D. Hui, R. Singh, I. Ahuja, L. Feo, and F. Fraternali. (2017) Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng., vol. 115, pp. 409–422.
  9. M. Koller and G. Braunegg. (2018) Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion,” EuroBiotech J., vol. 2, no. 2, pp. 89–103, doi: 10.2478/ebtj-2018-0013.
  10. B. Rahadi, P. Setiani, and R. Antonius. (2020) Karakteristik Bioplastik Berbahan Dasar Limbah Cair Tahu (Whey) dengan Penambahan Kitosan dan Gliserol. J. Sumberd. Alam dan Lingkung., vol. 7, no. 2, pp. 81–89, 2020, doi: 10.21776/ub.jsal.007.02.5.
  11. M. Ravi, B. Saputra, and E. Supriyo. (2020) PEMBUATAN PLASTIK BIODEGRADABLE ZnO DAN STABILIZER GLISEROL. vol. 01, no. 1, pp. 41–51.
  12. R. Martha and S. Sutoyo. (2021) PEMBUATAN DAN KARAKTERISASI PLASTIK BIODEGRADABLE DARI KOMPOSIT HDPE ( HIGH DENSITY POLYETHYLENE ) DAN PATI UMBI SUWEG ( Amorphophallus campanulatus ). vol. 10, no. 1, pp. 85–95.
  13. I. Iswendi, I. Iryani, A. Alpira, and R. F. Putra. (2021) Utilization of Cassava Processing Liquid Waste as Raw Material for Making Biodegradable Plastics with the Addition of Glycerol Plasticizer. EKSAKTA J. Sci. Data Anal., vol. 2, no. September, pp. 88–98 , doi: 10.20885/EKSAKTA.vol2.iss1.art.
  14. U. Amin et al.. (2021) Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. Int. J. Biol. Macromol.
  15. M. Qin et al. (2021) A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments?. J. Clean. Prod., p. 127816.
  16. Benbettaïeb, Nasreddine, Frédéric, Debeaufort, and Thomas Karbowiak. (2019) Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activity,” Crit. Rev. Food Sci. Nutr., vol. 59, pp. 3431–3455.
  17. A. Getachew and F. Woldesenbet. (2016) Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. in BMC research notes, vol. 9, no. 1, pp. 1–9.
  18. M. Marichelvam, M. Jawaid, and M. Asim. (2019) Corn and rice starch-based bio-plastics as alternative packaging materials. in Fibers, vol. 7, no. 4, p. 32.
  19. C. Maraveas. (2020) Production of sustainable and biodegradable polymers from agricultural waste. in Polymers, vol. 12, no. 5, p. 1127.
  20. F. Fitriani. (2018) Sintesis dan Uji Kualitas Plastik Biodegradable dari Pati Biji Nangka Menggunakan Variasi Penguat Logam Seng Oksida (ZnO) dan Plasticizer Gliserol. Universitas Islam Negeri Alauddin Makassar.
  21. A. Rahim, N. Alam, H. Haryadi, and U. Santoso. (2010) Pengaruh Konsentrasi Pati Aren dan Minyak Sawit Terhadap Sifat Fisik dan Mekanik Edible Film,” Agrol. J. Ilmu-ilmu Pertan., vol. 17, no. 1.
  22. H. Herrmann and H. Bucksch. (2014) Biodegradable. Dict. Geotech. Eng. Geotech., vol. 2, no. 2252, pp. 126–126, doi: 10.1007/978-3-642-41714-6_21579.
  23. A. N. C. Saputro and A. L. Ovita. (2017) Synthesis and Characterization of Bioplastic from Chitosan-Ganyong Starch (Canna edulis). JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 2, no. 1, pp. 13–21.
  24. T. Narancic and K. E. O’Connor. (2019) Plastic waste as a global challenge: are biodegradable plastics the answer to the plastic waste problem? Microbiology, vol. 165, pp. 129–137.
  25. S. Hidayati, Zulferiyenni, U. Maulidia, W. Satyajaya, and S. Hadi. (2021) Effect of glycerol concentration and carboxy methyl cellulose on biodegradable film characteristics of seaweed waste,” Heliyon, vol. 7, no. 8, p. e07799, doi: 10.1016/j.heliyon.2021.e07799.
  26. Y. Darni and H. Utami. (2009) Studi pembuatan dan karakteristik sifat mekanik dan hidrofobisitas bioplastik dari pati sorgum. J. Rekayasa Kim. Lingkung., vol. 7, no. 2.
  27. I. Iskandar, M. Zaki, S. Mulyati, and J. Fathanah, Umi and Sari, Indah and Juchairawati. (2010) Pembuatan Film Selulosa dari Nata de Pina. J. Rekayasa Kim. Lingkung., vol. 7, no. 3.
  28. M. B. Sogiana. (2013) Pencirian bioplastik tepung tapioka terplastisasi gliserol dengan penambahan karaginan.
  29. R. Harnist and Y. Darni. (2011) Penentuan kondisi optimum konsentrasi plasticizer pada sintesa plastik biodegradable berbahan dasar pati sorgum.
  30. Morgan. (2019) Summary for Policymakers. J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, doi: https://doi.org/10.1017/CBO9781107415324.004.
  31. S. Manalu and Y. Darni. (2013) Pengaruh Konsentrasi Plasticizer terhadap Karakteristik Material Bioplastik yang Ramah Lingkungan. in Seminar Nasional Material.