Main Article Content

Abstract

Komodo National Park is located in East Nusa Tenggara province which has a dry tropical climate. Air temperature in this area is relatively high with a lower rainfall compared to most of other Indonesian regions. This condition causes ecosystem in Komodo National Park to be unique with a wide area of savannah and dryland forest. This study aims to identify the change of rainfall and land cover in Komodo National Park in 2018-2020. The analysis was conducted using secondary data from observations and satellite products. The result shows that West Manggarai is classified in Aw climate type. The value of rainfall follows the pattern of ENSO events with a correlation between tree-month data of rainfall and the Ocean Nino Index (ONI) is 42% in average of June-December. The land cover of vegetation in March/April has decreased by 2,240 Ha (2018-2019) and 2,517 Ha (2019-2020) or around 4% and 5%​​ of total area. La Nina has occurred during wet season 2017/2018 followed by El Nino in the coming years. There was decreasing of rainfall during November-February period in 2019 and 2020, which was 17% and 37% lower compared to 2018.

Keywords

climate El Nino komodo national park La Nina Land cover

Article Details

How to Cite
1.
Salmayenti R, Mukti Ramadhanti PA. Precipitation and land cover change in Komodo National Park during El Nino and La Nina . Eksakta [Internet]. 2021Sep.26 [cited 2021Sep.28];22(3):190-9. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/282

References

  1. BMKG] Badan Meteorologi dan Geofisika. (2021). Ekstrem perubahan iklim. Retrieved From, https://www.bmkg.go.id/iklim/?p=ekstrem-perubahan-iklim. Diakses pada tanggal 20 Juli 2021.
  2. Aldrian, E. (2001). Pembagian iklim indonesia berdasarkan pola curah hujan dengan metoda “double correlation”. Jurnal Sains & Teknologi Modifikasi Cuaca, 2(1), 11-18.
  3. Putra, I. N. J. T., Karang, I. W. G. A., & Puta, I. D. N. N. (2019). Analisis temporal suhu permukaan laut di perairan indonesia selama 32 tahun (Era AVHRR). Journal of Marine and Aquatic Sciences, 5(2), 234-246.
  4. Bulgin, C. E., Merchant, C. J., & Ferreira, D. (2020). Tendencies, variability and persistence of sea surface temperature anomalies. Scientific reports, 10(1), 1-13.
  5. Qalbi, H. B., Faqih, A., & Hidayat, R. (2017). Future rainfall variability in Indonesia under different ENSO and IOD composites based on decadal predictions of CMIP5 datasets. In IOP Conference Series: Earth and Environmental Science (Vol. 54, No. 1, p. 012043). IOP Publishing.
  6. Kurniadi, A., Weller, E., Min, S. K., & Seong, M. G. (2021). Independent ENSO and IOD impacts on rainfall extremes over Indonesia. International Journal of Climatology, 41(6), 3640-3656.
  7. Tangang, F., Salimun, E., Aldrian, E., Sopaheluwakan, A., & Juneng, L. (2018). ENSO modulation of seasonal rainfall and extremes in Indonesia. Climate Dynamics, 51(7), 2559-2580.
  8. Komodo National Park. (2021). Taman Nasional Komodo. Retrieved From, http://ksdae.menlhk.go.id/tn/field/komodo/. Diakses pada tanggal 01 Juni 2021.
  9. Badan Pusat Statistika Manggarai Barat. (2021). Publikasi statistic. Retrieved From, https://www.manggaraibaratkab.bps.go.id. Diakses pada tanggal 14 Juli 2021.
  10. Susanto, J., Zheng, X., Liu, Y., & Wang, C. (2020). The impacts of climate variables and climate-related extreme events on island country’s tourism: Evidence from Indonesia. Journal of Cleaner Production, 276, 124204.
  11. Mulyani, A., Nursyamsi, D., & Las, I. (2014). Percepatan pengembangan pertanian lahan kering iklim kering di Nusa Tenggara. Pengembangan Inovasi Pertanian, 7(4), 187-198.
  12. Suriadi, A., Mulyani, A., & Hadiawati, L. (2021). Biophysical characteristics of dry-climate upland and agriculture development challenges in West Nusa Tenggara and East Nusa Tenggara Provinces. In IOP Conference Series: Earth and Environmental Science (Vol. 648, No. 1, p. 012014). IOP Publishing
  13. Kurniawan, H., & Yuniati, D. (2015). Potensi simpanan karbon pada tiga tipe savana di Nusa Tenggara Timur. Jurnal Penelitian Kehutanan Wallacea, 4(1), 51-62.
  14. Abdulraheem, K. A., Aremu, A. S., Adeniran, J. A., Yusuf, M. N. O., Odediran, E. T., Ismail, A., & Sonibare, J. A. (2021). Effects of grassland fire on selected properties of soil in the savannah region of nigeria. LAUTECH Journal of Civil and Environmental Studies, 6(2), 14-22.
  15. Zhang, W., Brandt, M., Penuelas, J., Guichard, F., Tong, X., Tian, F., & Fensholt, R. (2019). Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nature communications, 10(1), 1-7.
  16. Jessop, T., Imansyah, M. J., Purwandana, D., & Rudiharto, H. (2007). Ekologi populasi, reproduksi, dan spasial biawak komodo (varanus komodoensis) di Taman Nasional Komodo, Indonesia. Laporan Akhir.(Taman Nasional komodo, Labuan Bajo, 2007).
  17. [NCAR] National Center for Atmospheric Research. (2021). Climate data nino sst indices (nino 1+2, 3, 3.4, 4; oni and tni). Retrieved From, https://www.climatedataguide.ucar.edu. Diakses pada tanggal 25 Mei 2021.
  18. Nugroho, J. T., Nurfitriani, D., Chulafak, G. A., Manalu, R. J., & Harini, S. (2021). Rainfall anomalies assessment during drought episodes of 2015 in Indonesia using CHIRPS Data. In IOP Conference Series: Earth and Environmental Science (Vol. 739, No. 1, p. 012044). IOP Publishing.
  19. Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12.
  20. Fanin, T., & Werf, G. R. (2017). Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences, 14(18), 3995-4008.
  21. Athoillah, I., Sibarani, R. M., & Doloksaribu, D. E. (2017). Analisis spasial El Niño kuat tahun 2015 dan La Nina lemah tahun 2016 (pengaruhnya terhadap kelembapan, angin dan curah hujan di Indonesia). Jurnal Sains & Teknologi Modifikasi Cuaca, 18(1), 33-41.
  22. Hasan, M. H., & Mongko, M. F. (2016). Adaptasi dan mitigasi fenomena el niño di provinsi nusa tenggara timur. Prosiding Seminar Nasional Geografi UMS 2016. ISBN: 978-602-361-044-0
  23. As-syakur, A. R. (2018). TRMM PR observed spatial patterns of the convective-stratiform rainfall over Indonesia and their response to ENSO. In IOP Conference Series: Earth and Environmental Science (Vol. 165, No. 1, p. 012009). IOP Publishing.
  24. Murphy, B. P., Prior, L. D., Cochrane, M. A., Williamson, G. J., & Bowman, D. M. (2019). Biomass consumption by surface fires across Earth's most fire prone continent. Global change biology, 25(1), 254-268.
  25. Arjasakusuma, S., Yamaguchi, Y., Hirano, Y., & Zhou, X. (2018). ENSO-and rainfall-sensitive vegetation regions in Indonesia as identified from multi-sensor remote sensing data. ISPRS International Journal of Geo-Information, 7(3), 103.
  26. Damasceno, G., & Fidelis, A. (2020). Abundance of invasive grasses is dependent on fire regime and climatic conditions in tropical savannas. Journal of Environmental Management, 271, 111016
  27. Davis, F. W., Synes, N. W., Fricker, G. A., McCullough, I. M., Serra-Diaz, J. M., Franklin, J., & Flint, A. L. (2019). LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes. Agricultural and Forest Meteorology, 269, 192-202.
  28. Jones, A. R., Jessop, T. S., Ariefiandy, A., Brook, B. W., Brown, S. C., Ciofi, C., & Fordham, D. A. (2020). Identifying island safe havens to prevent the extinction of the World’s largest lizard from global warming. Ecology and evolution, 10(19), 10492-10507.
  29. Ariefiandy, A., Purwandana, D., Azmi, M., Nasu, S. A., Mardani, J., Ciofi, C., & Jessop, T. S. (2021). Human activities associated with reduced Komodo dragon habitat use and range loss on Flores. Biodiversity and Conservation, 30(2), 461-479.
  30. Sutomo, S. (2020). Vegetation composition of savanna ecosystem as a habitat for the komodo dragon (varanus komodoensis) on Padar And Komodo Islands, Flores, East Nusa Tenggara Indonesia. Journal of Tropical Biodiversity and Biotechnology, 5(1), 10-15.