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Abstract. Autophagy is a tightly regulated catabolic process that
enables cancer cells to survive under metabolic stress and contributes
to the development of chemoresistance. Targeting autophagy has
therefore emerged as a promising strategy to enhance cancer therapy
efficacy. Flavonoids, a diverse class of polyphenolic compounds
abundantly found in plants, have gained considerable attention due to
their broad-spectrum biological activities, including anticancer effects.
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adjuvant agents. This review discusses the critical role of autophagy in
cancer progression and drug resistance, and examines current
evidence supporting the integration of flavonoids as autophagy
modulators in the design of more effective and targeted anticancer
strategies, particularly in breast cancer therapy.
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1. Introduction

Autophagy, an evolutionarily conserved lysosome-dependent degradation pathway, is increasingly
recognized for its dual role in cancer biology [1]. In early tumorigenesis, autophagy acts as a tumor
suppressor by clearing damaged organelles and misfolded proteins; however, in established
malignancies such as breast cancer, it frequently serves as a survival mechanism. Evidence indicates
that autophagy supports tumor cells under metabolic stress, hypoxia, and especially in response to
therapy, facilitating resistance against anticancer agents [2]. In breast cancer, upregulation of
autophagy-related proteins (e.g., Beclin-1, LC3) and signaling via PI3K/AKT/mTOR and
STAT3/HMGBI1 pathways have been linked to reduced apoptosis after treatment, promoting drug
tolerance and relapse [3-4].

Breast cancer remains a leading global health challenge. With approximately 2.3 million new
diagnoses and 670,000 deaths reported in 2022, it is the most commonly diagnosed cancer in women
and among the top causes of cancer mortality [5-6]. Its marked heterogeneity including luminal,
HER2-positive, and triple-negative subtypes complicates treatment, especially as metastatic disease
often develops multidrug resistance. Five-year survival rates for metastatic cases remain low (~30 %),
underscoring the urgent need for strategies that target both tumor diversity and resistance mechanisms
[7].

To overcome the limitations of conventional therapies, researchers have increasingly explored
natural products—such as flavonoids, alkaloids, and terpenoids—as adjuncts or alternatives. These
compounds exhibit multi-target activities, including inhibition of tumor proliferation, modulation of
cell death pathways, reversal of drug efflux, and suppression of metastasis, often with reduced toxicity
in normal tissues [8—10]. Among these, flavonoids have demonstrated significant potential in
sensitizing resistant cancer cells and enhancing the efficacy of chemo- and targeted therapies.

Flavonoids have been reported to modulate autophagy in cancer models, either by suppressing or
activating its key regulators such as PI3K/Akt/mTOR to promote autophagy-related cell death,
enhance chemosensitivity, and inhibit tumor proliferation, migration, and metastasis [11-14].
However, these effects appear to be highly context-dependent, as studies in other malignancies, such
as gastric and bladder cancer, suggest that certain flavonoids like quercetin may instead elicit
cytoprotective autophagy, prevent apoptosis, and require autophagy inhibitor agents in order to exert
anticancer effects [15-16]. This bidirectional and tumor-type—specific behavior highlights a critical gap
in our understanding of how flavonoid-mediated autophagy influences breast cancer progression.
Given the limited and often fragmented evidence available, the present review aims to review the role
of flavonoids in autophagy modulation and its implications for breast cancer therapy. A deeper
understanding of these context-specific mechanisms will not only advance our knowledge of
flavonoid-modulated autophagy in breast cancer, but also facilitate the rational design of flavonoid-
based therapeutics, either as standalone anticancer agents or as adjuvants that enhance the efficacy
and specificity of current treatment regimens.

2. Experimental Section

2.1. Material Search Strategy

This concise review implemented a systematic literature browsing protocol. The authors conducted
literature search using various sources which include PubMed, Google Scholar, Crossref and USDA
food database from November 2024 to March 2025. Search strategy was divided into four main blocks
with different set of relevant keywords. The first block: autophagy, pathway, cancer, ATG,
chemoresistance, drug resistance, breast cancer, target, therapy; second block included: breast cancer,
epidemiology, incidence, burden, Asia, GLOBOCAN, risk factor, classification, diagnosis, prognosis,
marker, treatment; third block comprised of: flavonoid, classification, biosynthesis, biological activities,
food; and the fourth block with: autophagy, inhibitor, blockage, breast cancer, flavonoid.
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The process of selecting articles for this literature review began with the initial record
identification, yielding 76 articles from the defined search strategy. An early screening of title and
abstract was carried out for each selected article. This initial pool was swiftly refined by removing
duplicates and other preliminary exclusions, resulting in 65 articles that progressed to the detailed
screening phase. In the subsequent, more rigorous eligibility assessment, the full texts of these 65
articles were thoroughly evaluated against the inclusion and exclusion criteria. This in-depth scrutiny
led to the exclusion of 10 articles due to reasons such as a lack of relevant data or other criteria. Details
of exclusion criteria in each step are depicted in Table 1. Ultimately, the remaining 55 articles
successfully met all quality and relevance requirements and were therefore included in the final
analysis of the literature review, forming the complete evidence base for the study.

Each selected manuscript was reviewed independently and any discordance would be resolved
by voting among authors. Figure 1 depicts the workflow for article selection process in this review.
The decision to use narrative synthesis for this review was justified by the high level of study
heterogeneity across the literature and this method is able to systematically textually summarize and
interpret these diverse findings, ensuring that the mechanistic complexity is thoroughly explained
rather than being oversimplified into a single statistical effect [17]. Online PRISMA tool was used to
assist making the chart for this approach [18].

Table 1. Exclusion criteria of articles in this study.
Step Criteria

Identification = Duplicate entries
Studies were not conducted in human (Homo sapiens)
Studies were conducted in cancer types other than breast carcinoma

Screening Articles are neither in Bahasa Indonesia nor English
Articles cannot be retrieved
Scope of discussion is outside canonical autophagy pathways and its regulatory
proteins
Effect of multiple flavonoids in a whole extract is not evaluated separately or
uncleared
Specified flavonoids has no effect on autophagy
Flavonoids were modified as synthetic derivatives instead of naturally
occurring compounds
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Figure 1. PRISMA chart of literature search and analysis

3. Results and Discussion

3.1. Cytoprotective Autophagy in Cancer Cell Survival and Its Potential for Targeted Therapy
Autophagy is actually a physiological attempt to promote cell survival under unfavorable conditions
such as nutrition deprivation, hypoxia, and other factors by recycling intracellular constituents to
sustain energy and biosynthesis [19]. However, it is often upregulated in cancer as a mechanism to
protect cancer cells from various stressors, notably those induced by administration of cancer drugs.
Autophagy occurs in several types, but mostly in form of macroautophagy. This begins with activation
of upstream autophagy sensor, formation of phagophore—a precursor for autophagosome in a step
called as nucleation, phagophore elongation, autophagosome fusion with lysosome and cargo
molecule degradation by lysosomal enzymes [1]. Autophagy sequential steps is illustrated in Figure 2.
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Figure 2. Phases of autophagy flux [19]
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Key regulators of autophagy include: AMPK which activates autophagy in response to low ATP,
mTOR; the master negative regulator whose inhibition initiates autophagy, and ULK1, which
orchestrates autophagosome initiation alongside Vps34-Beclinl nucleation complexes [19]. In
nutrient-deprived or drug-challenged tumor cells, activation of AMPK and ULK1 with concomitant
mTOR suppression enables cytoprotective autophagy that prevents apoptotic death. Overexpression
of Beclinl or heightened Vps34 activity further enhances this protective mechanism and correlates
with poor prognosis in several cancers, including breast carcinoma [2],[20]. Another study found that
autophagy induced by hypoxic environment in breast cancer stem cells contributes to their resistant
phenotype. Based on these notions, targeted modulation of autophagy has emerged as a therapeutic
strategy [21-22].

Early-stage inhibitors like Spautin-1 destabilize the Beclinl-Vps34 complex via USP10/13
inhibition, while ULK1 inhibitors such as SBI-0206965 suppress autophagosome formation [23-24].
MHY 1485, conversely, activates mTOR to block autophagy initiation and VPS34 inhibitors (e.g.,
PF-03814735), late-stage lysosome inhibitors (chloroquine, hydroxychloroquine, Lys05), and PI3K-
related inhibitors (Wortmannin, GW837331X) impair autophagy at nucleation or degradation stages
[20],[25-26]. Obatoclax has been reported to disrupt autophagic flux by impairing lysosomal
acidification [27]. Combined or sequential use of these compounds—such as SBI-0206965 with
mTOR inhibitors or chloroquine with chemotherapy—has sensitized tumor cells to apoptosis in
preclinical models [21-22],[26]. As promising as they are, these autophagy modulators still bear a risk
of uncomfortable side effects. Hence, alternative treatment through utilization of bioactive compounds
isolated from natural plants with higher safety profile, such as flavonoids, is encouraged and being
developed [28-29].

3.2. Flavonoids: Chemistry, Diet, and Health

Flavonoids are polyphenolic compounds characterized by a C6-C3-C6 backbone with various
hydroxylations and glycosylated forms (Figure 3). They have their name from the latin word ‘flavus’
meaning yellow [30]. Common in fruits, vegetables, teas, and grains, they exhibit antioxidant, anti-
inflammatory, cardiovascular, and anticancer properties, flavonoids act through ROS scavenging,
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modulation of signal transduction (e.g., PI3K/AKT/mTOR, MAPK, NF-kB), epigenetic regulation,
and miRNA expression [29],[31]. These yellow-by-nature compounds are categorized into several
subclasses based on their chemical structure, particularly variations in the oxidation state and
substitution pattern of the central C-ring [32]. These structural distinctions underpin their diverse
biological activities, including antioxidant, anti-inflammatory, and anticancer potentials.
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Figure 3. Flavonoid basic structure, classification and natural sources [32].
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Some notable ones include anthocyanidins with a flavylium cation structure, giving rise to their
vibrant pigmentation and pH-dependent color shifts. Others include strong antioxidant flavanols (e.g.,
catechins), flavanones commonly found in citrus fruits, flavonols with ability to chelate metals and
scavenge free radicals, isoflavones that has phytoestrogenic activity due to their similarity to 17§-
estradiol and so forth [32-33]. Given their abundance in nature, a considerable amount of flavonoid
compounds have been identified and reviewed from our daily diet sources. Table 2 presents a list of
selected major flavonoids based on Food and Nutrient Database for Dietary Studies by Food Surveys
Research Group, U.S. Department of Agriculture or USDA [34].

Table 2. Classification and Examples of Dietary Flavonoids by USDA [34].
Flavonoid Class Compound Name
Anthocyanidins Cyanidin
Delphinidin
Malvidin
Pelargonidin
Peonidin
Petunidin
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Flavonoid Class Compound Name
Flavan-3-ols (-)-Epicatechin*
(-)-Epicatechin 3-gallate*
(-)-Epigallocatechin*
(-)-Epigallocatechin 3-
gallate*
(+)-Catechin*
(+)-Gallocatechin*
Theaflavin
Theaflavin-3,3'-digallate
Theaflavin-3'-gallate
Theaflavin-3-gallate
Thearubigins
Flavanones Eriodictyol
Hesperetin
Naringenin
Flavones Apigenin
Luteolin
Flavonols Isorhamnetin
Kaempferol
Myricetin
Quercetin
Isoflavones Daidzein
Genistein
Glycitein

*Denotes catechin-type compounds commonly found in tea.

3.3. Flavonoids as Autophagy Modulators in Cancer

Increasing evidence supports flavonoid-mediated modulation of autophagy in cancer, notably as
inducers and few as inhibitors or both. Flavonoids may activate autophagy in tumor cells, leading to
excessive degradation of vital proteins and lessen their chance to survive. While as inhibitors,
flavonoids might block autophagic recycling process and prevent cancer cells from reusing essential
components like nutrition or regulatory proteins. [35-36]. A schematic molecular workflow of
flavonoids in autophagy is highlighted in Figure 4 and their corresponding examples along with their
proposed working mechanisms are shown in Table 3.
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Figure 4. Role of flavonoids as autophagy modulators in breast cancer. The image was
created in Biorender with some modifications in Microsoft PowerPoint and Paint.

Each of these flavonoids may have their own molecular targets and hence, diverse biological roles.
Some are predominantly involved in autophagy pathways and others are tightly interconnected with
other essential biological processes, most notably apoptosis [2]. As presented in Table 3, these
compounds might have reciprocal effects with regard to cell survival mechanisms. Due to their
antioxidant properties in nature, flavonoids can counteract oxidative stress induced by their own
administration, protecting cancer cells from death. This applies in particular when reactive oxygen
species (ROS)-dependent autophagy becomes the main workflow [37,38]. Some flavonoids may be
combined with other drugs with opposite mechanisms in order to get similar outcomes [29].

Table 3. Flavonoids with Autophagy Modulator Potentials in Breast Cancer

Flavonoids Class Modulator Proposed Mechanisms
Effects
Quercetin Flavonols Activator  Glycolysis suppression through Akt-mTOR

mediated autophagy induction in MCF-7
and MDA-MB-231 cells [39-40].

Apigenin Flavones Activator  T47D and MDA-MB-231 cell apoptosis
when combined with autophagy inhibitor,
3-methyladenine [41].

Silibinin Flavonolignans  Activator =~ ROS-dependent mitochondrial
dysfunction, ATP depletion, BNIP3
upregulation in MCF-7 cells [37].
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Flavonoids Class Modulator Proposed Mechanisms
Effects

Downregulation of ERa, promotion of
ERP activity, caspase-independent MCF-7
cell apoptosis [37],[42].

Inhibitor Inducer of ROS and RNS generation in
MCF-7 cells, downregulation of
autophagy, negative feedback loop between
redox signaling and autophagy [38].

Juglanin Flavonols Activator  MCF-7 cell apoptosis and autophagy via
ROS/JNK signaling [43].
Baicalein Flavones Activator  MCF-7 and MDA-MB-231 cell apoptosis

and autophagy in vitro and in vivo through
inhibition of the PI3K/AKT pathway [44].

Isorhamnetin Flavonols Activator ~ Suppression of PI3K/AKT/mTOR/ULK
signaling in MCF-7 and MDA-MB-231
cells [45].

Genkwanin Flavones Activator ~ Suppression of PI3K/AKT/mTOR/ULK
signaling in MCF-7 and MDA-MB-231
cells [45].

Acacetin Flavones Activator  Suppression of PI3K/AKT/mTOR/ULK
signaling in MCF-7 and MDA-MB-231
cells [45].

Warangalone Isoflavones Activator  Inducer of protective PINK1/Parkin-
mediated mitophagy and mitochondrial
apoptosis in MCF-7 and MDA-MB-231
cells [46].

Luteolin Flavones Activator  Downregulation of SGKI1 and AKTS3,
FOXO3a translocation into nucleus,
BNIP3 upregulation in MDA-MB-231 and
4T1 cells [47].

Delphinidin Anthocyanidins ~ Activator ~ Suppression of mTOR pathway and
activation of AMPK pathway in MDA-
MB-453 and BT474 cells [48].

Myricetin Flavonols Activator  JNK and p38 phosphorylation, activation
of Beclin-1, LC3 and Bax in SK-BR-3 cells
[49].
Epigallocatechin-  Flavan-3-ols Activator  Inhibitor of protein arginine
3-gallate methyltransferase 5 (PRMT5) and

enhancer of zeste homolog 2 (EZH2) in
MCF-7 and MDA-MB-231 cells [50].

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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Flavonoids Class Modulator Proposed Mechanisms
Effects

Inhibition of Hs587T cell survival signals
when combined with p53 siRNA [51].

Hesperidin Flavanones Activator  Inducer of autophagy in silico [52].
Modulation of Bcl2/Bax pathway in MCF-

7 cells [53].
Icaritin Flavones Inhibitor =~ Suppression of reactive oxygen species

(ROS), autophagy blockade via estrogen
receptors (ERs) and activation of AMPK in
HaCaT cells [54].

Fisetin Flavonols Inhibitor Inhibition of light chain 3 (LC3) conversion
into LC3-I1, a component critical for stable
autophagosome membranes in MCF-7 cells
[55].

Phloretin Chalcones Inhibitor Phosphorylation of mTOR, pH-mediated
inhibition of autophagy in MCF-7 and
MDA-MB-231 cells [56].

Our review systematically synthesized current evidence on the role of flavonoids as autophagy
modulators in breast cancer and might have revealed a certain mechanistic and subclass-specific
pattern. We found that most flavonoids function as autophagy activators, promoting autophagy-
related cell death, while only a limited subset acts as autophagy inhibitors. The majority of the
identified autophagy modulators belong to the flavone and flavonol subclasses, whose characteristic
structural motifs—planarity, hydroxylation at C-3, and catechol groups on the B-ring—facilitate
oxidative stress induction, mitochondrial perturbation, and modulation of the PI3K/Akt/mTOR and
AMPK/ULKI1 signaling cascades [10,57]. These molecular signatures strongly correlate with their
ability to initiate autophagy and drive programmed cell death in breast cancer cells.

3.4. Comparison with Previous Reviews

Our findings align with earlier systematic reviews, such as those by Silva et al. [57] and Hosseinzadeh
et al. [10], which concluded that flavonoids commonly induce autophagy through PI3K/Akt/mTOR
inhibition and AMPK activation. However, the novelty of this review lies in its quantitative subclass
analysis and focused evaluation within breast cancer models, revealing that flavones and flavonols
constitute the predominant autophagy-inducing groups. Previous works discussed autophagy
modulation broadly across cancers but did not delineate structural subclass trends or dominance
patterns specific to breast tissue [29],[35].

Furthermore, our synthesis integrates recent mechanistic discoveries that extend beyond
canonical signaling pathways. Notably, we highlight the epigenetic dimension of flavonoid action,
where compounds such as quercetin and apigenin modulate histone methyltransferases EZH2 and
PRMTS5 and alter acetylation states to promote autophagy-related gene expression [50],[58]. This
multi-layered regulation—combining signal transduction, redox, and epigenetic control—represents a
conceptual advance beyond previous reviews limited to cytoplasmic signaling.

Flavonoid Role as Autophagy Modulators in Breast Cancer Treatment Strategy
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3.5. Mechanistic Convergence and Context Dependency

Despite the predominance of autophagy activation, several flavonoids exhibit context-dependent dual
effects. For example, phloretin, a dihydrochalcone, inhibits cytoprotective autophagy and enhances
chemosensitivity in glucose-deprived breast cancer cells [56]. Similarly, silibinin shows both
cytoprotective and pro-death autophagic responses depending on concentration and co-treatment
conditions [42],[59]. These observations underscore that autophagy modulation by flavonoids is not
unidirectional but highly contingent on cellular metabolic status, redox balance, and drug context.
Such duality complicates translational development but also offers therapeutic flexibility: selective
enhancement of cytotoxic autophagy or suppression of pro-survival autophagy could be tuned via
structure-guided modification or combination therapy design [35],[60].

3.6. Consistency, Contradictions, and Novel Insights

Overall, our findings are consistent with the majority of contemporary evidence suggesting that
flavonoids trigger autophagic cell death in breast cancer cells [11],[29],[35],[57],[61]. However,
discrepancies exist with studies interpreting autophagy as a cytoprotective adaptation, particularly
under hypoxia or chronic stress. These contradictions likely arise from methodological limitations,
such as failure to assess autophagic flux or reliance on static markers (LC3-II, Beclin-1) [62]. Our
review emphasizes that accurate differentiation between autophagy induction and flux blockade
requires dynamic assays using p62/SQSTMI1 turnover, lysosomal inhibitors, and tandem LC3
reporters—an analytical refinement that prior reviews often overlooked [63]. This methodological
critique represents another novel contribution of the present review, providing a framework for
interpreting autophagy endpoints more rigorously in future chemotherapeutic studies involving
flavonoids.

3.7. Limitations and Future Research Directions
Our analysis also revealed field-level limitations that warrant systematic correction. Most available
studies are in vitro, often conducted at supra-physiological concentrations, with limited
pharmacokinetic validation. In vivo investigations remain scarce, and differences among breast cancer
subtypes (ER+, HER2+, TNBC) are seldom addressed. Furthermore, mechanistic studies rarely
integrate multi-omics profiling, leaving cross-talk between autophagy, apoptosis, and metabolic
rewiring insufficiently understood. Hence, future research topics may:
1. Apply standardized autophagic flux assays to resolve cytoprotective vs cytotoxic outcomes [63]
2. Conduct in vivo subtype-specific evaluations of flavonoids under clinically relevant exposure
levels [61],[64]
3. Integrate epigenomic and proteomic profiling to map autophagy networks [65]
4. Develop pharmacokinetically improved analogs or nanoparticle formulations to overcome poor
solubility and stability [66]
5. Explore combination strategies between flavonoids and autophagy modulators (e.g., chloroquine
or VPS34 inhibitors) using sequential dosing to enhance therapeutic selectivity [60]

3.8. Implications for Chemistry Education and Translational Research

Beyond oncological relevance, this review also contributes meaningfully to chemistry education,
particularly in illustrating how structure—activity relationships (SAR) guide biological function and
therapeutic application. By correlating specific stereochemical features, i.e., hydroxylation patterns,
conjugation, and glycosylation, with autophagy modulation, the review offers a clear case study for
integrating organic chemistry, biochemistry, and pharmacology in education [67]. This integrative
framework can serve as a didactic model in medicinal chemistry curricula, emphasizing that natural
product chemistry extends beyond isolation and characterization to encompass dynamic biological
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network modulation. Such interdisciplinary connections not only enrich chemical education but also
inspire rational design of next-generation autophagy-modulating therapeutics [67-68].

4. Conclusion

In summary, our review underscores that flavones and flavonols dominate as autophagy activators in
breast cancer, primarily inducing autophagy-related cell death through AMPK/mTOR signaling,
ROS generation, and epigenetic modulation. Only few act as autophagy inhibitors and silibinin might
have dual modulation effect. This subclass-specific dominance and mechanistic breadth represent
novel insights that expand upon prior literature. By integrating mechanistic, structural, and
educational perspectives, this review contributes to the scientific understanding of autophagy
modulation, utilization of structure—function reasoning in breast cancer drug development, and to the
pedagogical advancement in chemical and pharmaceutical sciences.
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