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Abstract. Breast cancer is a heterogeneous disease characterized by 
distinct molecular and metabolic characteristics, making its 

diagnostics and treatment challenging. The existence of metabolic 

reprogramming in breast cancer underscores the potential to identify 
biomarkers through metabolomics studies, offering new avenues for 

personalized therapeutic approaches. Machine learning algorithms 

are now increasingly used to uncover complex patterns in 

metabolomics data. A comprehensive analysis of in silico 
metabolomics had successfully identified 24 significant metabolites 

after rigorous univariate and multivariate tests. Pathway analysis 

highlighted the apparent involvement of glycerolphosphate in 
glycerophospholipid and glycerolipid metabolism, indicating its 

potential role in breast cancer pathology. Validation of these 24 

metabolites using machine learning algorithms provided superior 

results, with Neural Network achieving an AUC of 0.979 and a 
precision of 93%, Logistic Regression showing an AUC of 0.945 and 

a precision of 95.7%, as well as Random Forest reporting an AUC of 

0.974 and a precision of 95.7% in predictive performance. These 
findings demonstrate the remarkable ability of machine learning to 

improve biomarker validation accuracy in metabolomics, facilitating 

better diagnostic strategies for breast cancer. 
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1. Introduction 
Breast cancer becomes the most commonly diagnosed cancer and the first most common cancer in 

women, surpassing lung cancer cases. The increasing incidence and mortality of breast cancer is a 
global problem that needs special attention [1-2]. In Indonesia, 66.271 new cases of breast cancer were 

recorded in 2022, making it the most prevalent type of cancer in the country [3-4]. Most breast cancer 
patients diagnosed in Indonesia are in the late stage, which is associated with low survival and poor 

prognosis [5-6]. Early detection of disease and selection of appropriate treatment can improve the 
prognosis of breast cancer patients [7-10].  

Conventional methods of breast cancer screening are performed with imaging techniques, such 
as mammography, ultrasonography, and magnetic resonance imaging (MRI). Needle biopsies are 

commonly performed operatively to confirm and determine the histopathological classification and 
stage of breast cancer [11-12]. The growing emphasis on personalized precision medicine has 

increased the need for the development of new molecular markers. The hormone receptors estrogen 
receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) are 

used to aid in the molecular subtype classification of breast cancer. The predictive marker Ki-67 as a 
sign of cell proliferation is also widely used to aid classification as well as evaluation of neoadjuvant 

therapy [13-14]. Serological markers of serum CA-15-3 and CEA have also been utilized in the clinical 
setting, but have low sensitivity and specificity [8],[15]. 

Breast cancer is one of a complex and heterogeneous diseases. The heterogeneity of this disease 
becomes one of the results of changes in the regulation of cell metabolism, as proposed by Hanahan 
and Weinberg in the hallmark of cancer theory [16-17]. The multistep process of cancer cell occurrence 

can involve metabolic pathways, such as glucose, amino acids, and lipids to fulfill the needs of 
malignant cells, including increased proliferation, cell survival, cell differentiation, and others. These 

unique metabolite quantities represent a phenotype used for biomarker discovery in breast cancer [18-
19]. 

Metabolomics is a branch of the omics approach utilized in numerous breast cancer research, 
involving biological samples such as cell lines, tissues, blood, urine, and saliva [7],[13],[20-21]. This 

approach provides insights into the dynamic interplay of endogenous metabolites in response to 
individual changes influenced by genetic and environmental factors [14-15],[22].Untargeted 

metabolomics has a broader scope and is used for exploratory analysis of the entire spectrum of 
metabolites present, both known and unidentified. The objective is to thoroughly characterize the 

metabolome in a sample, which will enable the identification of new clinically relevant biomarkers 
[23-24]. For instance, significant changes involving glutamic acid, lactic acid, and fructose, have been 

observed in breast cancer patients compared to healthy individuals, with outstanding strong 
discriminatory capability area under the curve (AUC). Additionally, identified metabolite panels also 

showed high AUC values, which helped distinguish triple-negative breast cancer (TNBC) from non-
TNBC variants [25-26].  

Due to its coverage of thousands of metabolic signals, the analysis process is inherently more 
complex and requires advanced steps to pinpoint significant biomarkers. The complexity and volume 

of metabolomics data present significant challenges in analysis, particularly in uncovering subtle 
patterns and biological insights. The use of computational methods using machine learning (ML), 

especially when combined with metabolomics, has emerged as a powerful tool to address these 
challenges. ML facilitates the processing and analysis of metabolomics data by identifying subtle 

patterns, relationships, and insights that traditional statistical methods might overlook [27-28].  
In particular, applying computational ML strategies to metabolomics enables a more holistic and 

robust diagnostic approach, such as in cancer research, where precision in identifying biomarkers and 
pathways is critical. ML algorithms can be customized for each research project and can be improved 

with the availability of more data, thus increasing the precision and power of analysis in metabolomics 
studies. Both unsupervised and supervised methods in ML can be used for cancer classification and 
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prediction, which has potential for classification, biomarker screening, and progression prediction in 

breast cancer [29-30]. 
 

2. Experimental Section 

2.1. Materials 
The dataset used were obtained from The Metabolomic Workbench 
(https://www.metabolomicsworkbench.org/). The keyword used "breast cancer", then data selection 

was carried out. One dataset selected with Project ID PR000284 and Study ID ST000355. The dataset 
was split into training and testing datasets using Data Sampler widget on Orange data mining ver. 

3.37. (https://orangedatamining.com/). Data preprocessing, including data and statistical analysis 
were performed using Statistical Analysis modules available from MetaboAnalyst 6.0 

(https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml). Meanwhile, pathway and 
enrichment analysis were also performed using Pathway Analysis and Enrichment Analysis modules 

from MetaboAnalyst 6.0. Machine learning algorithm analysis and model evaluation were conducted 
using Test and Score and ROC analysis from Orange data mining ver. 3.37.  The research followed 

the flowchart described in Figure 1. 
 

 
Figure 1. Schematic/Flowchart of research 
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2.2. Tips 

2.2.1  Breast Cancer Dataset Acquisition   
The metabolomic dataset with Study ID ST000355 obtained from The Metabolomic Workbench. This 

dataset came from humans with sampling from blood plasma. The analysis instrument on the data 
employed mass spectrometry with a gas chromatography system (GC-MS). The dataset was then 

divided into two different groups, 134 breast cancer (BC) groups and 76 healthy control (HC) groups. 
The scope of the metabolomics study was selected to be untargeted as it can perform comprehensive 

profiling of metabolite compounds, both identified and unidentified, for the search of significant 
biomarkers. The downloaded dataset was in .TXT format. Next, these data were processed into 

.XLSX format first. BC and C (identifiers) were organized into columns, while metabolite data 
(features) were organized into rows. 

 

2.2.2  Data Analysis and Statistics  
The dataset was first subjected to data transformation and scaling to obtain uniform data distribution. 

Then, the dataset was divided into training (TRN) and testing (TST) data with a ratio of 80:20 
randomly by the 'Data Sampler' widget on Orange Data Mining. The TRN data were subjected to 
univariate analysis of T-test or Mann-Whitney U statistics to compare the mean metabolite 

concentrations of BC and HC groups. Multivariate analysis, namely Principal Component Analysis 
(PCA), was used for data dimension reduction and identification of patterns and variations of principal 

components. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) as a supervised 
method was also performed to determine the most significant variant (VIP). Feature selection was 

conducted to select the most relevant metabolites as breast cancer biomarker candidates. Feature 
selection criteria were p-value <0.05 from univariate analysis and VIP>1 from OPLS-DA analysis. 

Fold-change (FC) of each selected metabolite feature was calculated to examine the trend of 
concentration level from BC group.  

 

2.2.3  Pathway and Enrichment Analysis  
Selected metabolite features were subjected to pathway and enrichment analyses to identify the 

metabolite pathways and important biological processes involved in breast cancer. Each metabolite 
was mapped with databases from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Human 

Metabolome Database (HMDB).  
 

2.2.4  Machine Learning Algorithm and Validation Model 
The metabolite features selected from the TRN data were trained with ML models to create 
classification and prediction models. There are five classification algorithms used, namely support 

vector machines (SVM), logistic regression (LR), neural network (NN), naive bayes (NB), and random 
forest (RF). These are the algorithms commonly chosen for disease classification tasks. The 

classification results produced several classifier measurement parameters, including area under curve 
(AUC), accuracy, precision, recall, and specificity. These parameters were cross-validated by 10-fold 

cross-validation. The ML algorithm with the best performance based on these parameters was selected 
for testing and validation on TST data. Model evaluation on TST data was also presented with ROC 

curves.  

 

3. Results and Discussion 
The initial dataset included 138 BC groups (Stage I, n= 19; Stage II, n= 49; Stage III, n= 47; Stage IV, 

n= 23) and 76 HC groups. After subdivision, the TRN data consisted of 110 BC groups and 61 HC 
groups, while the TST data had 28 BC groups and 15 HC groups (Table 1). The dataset characteristics 
indicated a significant difference in age, with the BC group having a higher mean age. The subtype 

division of breast cancer showed stage 2 and 3 predominating, making it difficult to analyze metabolite 
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profiles by subtype. Both data subsets were stratified so that a balanced distribution of BC and HC 

groups was maintained.  
 

Table 1. Dataset characteristics of training and testing data 

Characteristics 
Training Data (TRN) Testing Data (TST) 

BC (n= 110) HC (n=61) BC (n=28) HC (n=15) 

Age (years, mean±SD) 53.2±10.6 32.8± 5.9 53±10 34± 6 

Stadium BC     

 1 15 (13.6%) N/A 4 (14.2%) N/A 

 2 39 (35.4%) N/A 10 (35.7%) N/A 

 3 38 (34.5%) N/A 9 (32.1%) N/A 

 4 18 (16.3%) N/A 5 (17.8%) N/A 

 
The PCA results on the TRN dataset showed the top two principal components (PC1 and PC2) at 

30.1%. Although this percentage indicates that a large amount of variance remains unexplained, the 
separation observed between the BC group and the HC group in the PCA plot indicates a distinct 

metabolite profile (Figure 2). Supervised OPLS-DA analysis maximized the separation of the two 
groups very clearly, with the BC group predominantly on the left side and the HC group on the right 

side (Figure 3A). The OPLS-DA model cross-validation results showed no overfitting and could be 
considered accurate in prediction (R2X=0.073; R2Y=0.731; Q2=0.69). Thus, the results of important 

metabolites (VIP) could be considered in feature selection for significant candidates (Figure 3B). 

 
Figure 2. PCA plot of the training dataset on the BC group (red circles) and HC group (green triangles) 
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(a)                                                                                  (b) 

Figure 3. Results of OPLS-DA training data set (A) Score plot. Red color indicates BC group and 
green color indicates HC group. (B) VIP Score. Red color indicates higher relative 
metabolite concentration and blue color indicates lower relative metabolite concentration. 

 
Further data analysis on the TRN dataset revealed a distinctive set of 24 metabolite profiles that 

could serve as potential biomarkers for breast cancer. The identified metabolites were those that 
showed significant fold change (FC >2 and <0.5) and desirable statistical relevance (p-value <0.05 

and VIP >1), highlighting their potential role in distinguishing the BC group from the HC group (Table 
2).  

Of the 24 metabolites, 22 metabolites were continued for pathway analysis and enrichment 
(Figure 4). The top five pathways with a significant p-value and false-discovery rate (FDR) also had 

an impact higher than 0 were glycerophospholipid metabolism, glycerolipid metabolism, glutathione 
metabolism, alanine, aspartate and glutamate metabolism, as well as arginine biosynthesis. The 

enrichment results confirmed the involvement of these five pathways in the occurrence of breast 
cancer. Of the five pathways, eight metabolites were dominantly involved, namely glycerolphosphate, 

glutamate, 5-oxoproline, cysteine, aspartate, asparagine, pyruvate, and succinate.  
Several metabolites, including glycerolphosphate (FC=0.011), glutamate (FC=0.049), 5-

oxoproline (FC=0.049), and aspartate (FC=0.054) showed exceptionally low downregulation in 
breast cancer patients. The exceedingly small FC, especially for glycerophosphate, coupled with the 

very low p-value and false discovery rates (FDR), proved the robustness of this discovery. Pathway 
and enrichment analysis also indicated that glycerophosphate reduction was highly involved in two 

pathways, namely glycerophospholipid and glycerolipid metabolism. Glycerophosphate, also known 
as glycerol-3-phosphate (G3P), is a lipid precursor molecule that plays a role in membrane synthesis, 

energy storage and signaling. The decrease in precursors for such synthesis may be due to metabolic 
disorders that are common in cancer to support rapid growth and proliferation. In addition, G3P with 

the help of the enzyme glycerol-3-phosphate acyltransferase 1 can produce lysophosphatidic acid 
(LPA), a component that promotes cancer cell migration. Increased invasion and migration 

requirements of cancer cells may lead to a state of G3P depletion. Tumor microenvironment 
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conditions, such as the presence of hypoxia and nutrient availability can also affect the level of lipid 

precursors [31-32].  
 

Table 2. Identification of metabolite differences between BC and C 

Metabolites FC Trend p-value FDR VIP 

Glycerolphosphate 0.011 Down 1.92E-51 2.46E-49 3.275 

Glutamate 0.049 Down 1.47E-33 9.38E-32 2.937 
5-Oxoproline 0.049 Down 3.61E-29 1.30E-27 2.791 

Aspartate 0.054 Down 4.05E-29 1.30E-27 2.750 
Asparagine 11.274 Up 1.65E-25 4.21E-24 2.648 

Hypotaurine 6.637 Up 3.25E-21 6.92E-20 2.504 
Cysteine 6.098 Up 8.58E-21 1.57E-19 2.489 

Arachidonic acid 0.136 Down 9.85E-20 1.58E-18 2.436 
Cystine 6.098 Up 2.52E-17 3.59E-16 2.283 

Pyruvate 2.382 Up 3.53E-14 4.52E-13 2.007 
sarcosine 2.177 Up 2.75E-11 3.20E-10 1.895 

Glyoxylic acid 4.741 Up 3.57E-11 3.81E-10 1.732 
Inositol 4.073 Up 8.55E-11 8.42E-10 1.855 

Benzoic acid 0.100 Down 1.48E-09 1.35E-08 1.754 
Succinate 0.338 Down 3.00E-07 2.40E-06 1.454 

Lactate 0.264 Down 4.75E-07 3.57E-06 1.446 
Isoleucine 0.311 Down 2.43E-06 1.73E-05 1.390 

3-amino-2-Piperidone 0.408 Down 5.52E-06 3.72E-05 1.274 
Caproic acid 0.293 Down 8.83E-06 5.65E-05 1.333 

Threonine 0.400 Down 2.51E-05 0.000135 1.222 
Octadecanoic acid 0.467 Down 2.53E-05 0.000135 1.186 

Malate 0.370 Down 3.61E-05 0.000178 1.225 
Myristoleic acid 0.456 Down 4.59E-05 0.00021 1.129 

3-hydroxyoxyisovaleric acid 0.486 Down 0.000166 0.000733 1.126 

 

The enzyme glycerol-3-phosphate dehydrogenase, a key enzyme involved in the conversion of 
G3P to dihydroxyacetone phosphate, has previously been reported to be downregulated in breast 

tumor tissue [33]. Although no studies related to breast cancer metabolomics have directly mentioned 
the role of G3P, the involvement of related enzymes may emphasize its potential as a new biomarker 

candidate. 
In contrast, some metabolites were found to be highly upregulated in breast cancer, namely 

asparagine (FC=11.274) and cysteine (FC=6.098). These two metabolites play an important role in 
breast cancer for supporting glutathione metabolism and the regulation of amino acid metabolism of 

alanine, aspartate, and glutamate. An increase in asparagine may act as a nitrogen reservoir used to 
the synthesis of other amino acids and nucleotides, such as alanine, aspartate, and glutamate. This is 

supported by the decrease in the amount of aspartate and glutamate in the data analysis results. 
Aspartate and glutamate have been widely mentioned in previous breast cancer studies and have 

potential as markers for early detection and diagnosis [34-35]. 
The downregulation of aspartate and glutamate reflects the metabolic adaptation of cancer as 

tumors often modify the availability of amino acids as essential ingredients for protein, energy 
formation, and signaling molecules [19],[36]. In addition to these changes, cancer cells undergo amino 

acid metabolism reprogramming to meet their high demands for growth and survival. For instance, 
the conversion of threonine, sarcosine, and glyoxylic acid into glycine is essential for the rapid 

proliferation of cancer cells and contributes to nucleotide biosynthesis [36-37]. 
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 Branched-chain amino acids (BCAAs) like isoleucine and its intermediate, 3-hydroxyisovaleric 

acid, both downregulated in this study, also reflect the high demand from tumor and play a pivotal 
role in protein synthesis [36],[38]. There are several metabolomic studies on breast cancer have 

highlighted the potential of amino acid as biomarkers [26],[39-40]. However, the results on specific 
amino acids differ across studies, requiring further standardized research and validation to establish 

consistent and clinically reliable biomarker profiles. 
Cysteine, along with glutamate and 5-oxoproline, plays a role in the synthesis of glutathione, one 

of the body's important antioxidants. Increased cysteine in breast cancer may increase the production 
of glutathione, which helps cancer cells deal with increased reactive oxygen species (ROS). This study 

also shows an increase in cystine, an amino acid that serves as a precursor for glutathione. Glutathione 
is used in neutralizing these molecules to protect cancer cells in an oxidative stress environment so 

that they can survive longer in the tumor microenvironment [35],[41]. Previous metabolomic studies 
have suggested triple negative breast cancer (TNBC) dependence on glutathione for survival, making 

it a promising potential therapeutic target [42]. 
The upregulation of pyruvate, together with the downregulation of lactate, shows the classic 

picture of the Warburg effect where cancer cells prefer to convert more glucose to lactate despite the 
availability of oxygen [43-44]. Pyruvate, along with succinate and malate, are also intermediate 

metabolites in the TCA cycle, which contribute to the progression of breast cancer [45].Succinate also 
affects immune system modulation and is a potential therapeutic target in cancer. This metabolite shift 

could be useful for future diagnostic and prognostic needs in breast cancer [46]. 
The dysregulation of lipid metabolism and signaling in breast cancer is reflected by the decrease 

in fatty acid metabolites and their derivatives found in the results of this study, namely arachidonic 

acid, octadecanoic acid, myristoleic acid, and caproic acid. Because of the lipid reprogramming, there 
are changes in lipid availability and composition, hence affecting the signaling and proliferation [47-

49]. This is also supported by the rising of inositol concentration that influences the behaviour of 
cancer cells. Past studies reported involvement of inositol monophosphatase 1 (IMPA1) in TNBC 

progression [50]. 

 
Figure 4. Pathway and Enrichment between BC and HC groups. Red color indicates more significant 

p-value; then circle size indicates significance of pathway impact and enrichment ratio. 

Alanine, aspartate and 

glutamate metabolism 

Glycerolipid 
metabolism 

Glycerophospholipid metabolism 
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After metabolite profiling between BC and HC groups, validation was done using several ML 

algorithm methods, namely SVM, RF, NN, NB, and LR with 10-fold cross validation based on 24 
metabolites. NN, LR, and RF have advantages in all parameter metrics. In order to test the TST data, 

the three ML models could be used and seen based on AUC-ROC (Figure 5,6,7). Table 3 presents the 
validation differences between TRN data and TST data based on the three algorithms. 

 

Table 3. Machine Learning Prediction Model Results on Biomarker candidates 

Metric 
Parameter 

Training Data Testing Data 

NN LR RF NN LR RF 

AUC 0.987 0.984 0.984 0.979 0.945 0.974 

Precision 0.988 0.982 0.983 0.930 0.957 0.957 

Recall  0.988 0.982 0.982 0.930 0.953 0.953 

Specificity 0.986 0.976 0.968 0.901 0.913 0.913 

NN, Neural Network; LR, Logistic Regression; RF, Random Forest; AUC, Area Under Curve;  

 

 
Figure 5. AUC-ROC on Testing Data based on biomarkers for BC group for Neural Network 

 

AUC: 0.979 

A 
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Figure 6. AUC-ROC on Testing Data based on biomarkers for BC group for Logistic Regression 

 

 
Figure 7. AUC-ROC on Testing Data based on biomarkers for BC group for Random Forest 

 
 

AUC: 0.945 

B

  A 

AUC: 0.974 

C 
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The AUC on training data in all three ML models indicates near-perfect performance in 

effectively predicting breast cancer based on metabolite profiles. Although on testing data, the AUC 
value slightly decreased in performance, the three ML models could still produce >0.9. Comparison 

of prediction model results with ML algorithm on training and testing data for precision, recall, and 
specificity parameters shows the same trend as AUC. All experienced a slight decrease in performance 

on testing data, but still in the >0.9 range. AUC is a well-known metric to assess diagnostic tests 
because it can measure the model's ability to distinguish between diseased and healthy individuals 

with a consistent measurement, regardless of the prevalence of disease. However, AUC can be 
misleading as a sole metric due to its inability to reflect the model’s performance in real clinical 

settings, particularly when there are biases in the dataset. The inclusion of other classification metrics 
such as precision, recall, and specificity in evaluation can provide a more comprehensive 

understanding of model performance, particularly when there is an imbalance in class or when positive 
and negative predictions have different clinical significance [51-52]. 

Precision, also known as positive predictive value, measured the proportion of correct positive 
results among all positive predictions made by the model, so it is crucial in medical diagnostics. Recall, 

or sensitivity, assesses the ability of the model to identify true positive cases out of all true positive 
cases, which is also very important for early disease detection. Specificity evaluates the proportion of 

true negatives correctly identified out of all true negatives, ensuring that individuals without disease 
are accurately identified, thus reducing false positives and preventing unnecessary interventions, 

especially in high-risk scenarios, such as cancer detection, where misdiagnosis can have a major 
impact [53-54]. 

ML models have an important role in validating biomarkers in breast cancer metabolomics 

studies by analyzing complex data sets to identify patterns and predict clinical outcomes. These 
models utilized high-dimensional data from metabolomics, lipidomics, and other omics technologies 

to discover biomarkers that could aid in diagnosis, prognosis, and treatment response prediction. 
Integration with metabolomics enables the development of predictive models that can categorize 

patients based on their likelihood of responding to certain therapies or risk of disease progression.  
In previous breast cancer metabolomics studies, the use of ML algorithms with NN, LR, and RF 

have been utilized. An Artificial Neural network (ANN) model achieved 97% accuracy in classifying 
breast cancer, demonstrating its effectiveness in processing complex data sets and identifying relevant 

biomarkers. ANN is particularly useful in handling high-dimensional data, such as metabolomics, it 
can study the non-linear relationship between metabolites and clinical outcomes, thus aiding in the 

identification of potential biomarkers [55-56]. Besides biomarkers, the utilization of deep neural 
networks is also used for the prediction of clinical response in anti-cancer drugs, which has the 

potential to integrate precision oncology in the future [57-58]. 
LR is a widely used ML algorithm for predicting breast cancer diagnosis from metabolomics data. 

It has simplicity and ease of interpretation, making it a popular choice in medical diagnosis. Breast 
cancer prediction using the LR algorithm is widely available and often achieves high accuracy when 

combined with optimized techniques. A breast cancer research study reported a prediction accuracy 
of 98.83% after applying optimization methods to LR [59]. It is also used to build diagnostic models 

by correlating metabolomic features with clinical phenotypes, achieving high accuracy and specificity. 
An ensemble approach model using LR achieved 98.8% accuracy in breast cancer classification, 

highlighting its robustness in biomarker validation [60-61]. 
Then, RF was used for its ability to handle large datasets and identify important features as well 

as to handle complex datasets and capture intricate patterns, making it highly effective for predicting 
breast cancer diagnosis on metabolomics data. An accuracy of 99.12% was reported for breast cancer 

classification using the Breast Cancer Wisconsin dataset. RF was also found to have better accuracy 
and reliability performance than other ML algorithms, such as decision tree and LR for breast cancer 

detection [62-63]. In addition, the combination of RF with other models to validate gene signatures in 
breast cancer confirmed its potential as a diagnostic tool [64]. 
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Many challenges remained although machine learning models of ANN, LR, and RF were 

potential approaches for biomarker validation in breast cancer metabolomics. The complexity of 
metabolomics data, including high dimensionality and variability, required careful model selection 

and validation. A combination of multiple algorithms might also be required if it aimed to improve 
the prediction accuracy and outcome of breast cancer patients.  

In addition, this study is a simple in silico analysis with inherent limitations, including the small 
size of the dataset, which constrains its ability to perform detailed classification of breast cancer, such 

as molecular subtyping. To overcome these limitations, future studies should use larger, more diverse 
datasets to boost the reliability of findings, and incorporate deep learning models to improve 

classification and performance. The accuracy and applicability of these models in clinical settings may 
be enhanced by integrating multi-omics data, such as genomics and proteomics, with metabolomics. 

Future research should also focus on improving the interpretability of the models, ensuring the 
reproducibility of findings across different populations, and validating results in clinical settings. 

 

4. Conclusion 
In silico metabolomics analysis yielded 24 metabolites, including glycerolphosphate, glutamate, 5-
oxoproline, cysteine, aspartate, asparagine, pyruvate, and succinate, which showed distinct 
differences between the breast cancer group and healthy controls. Validation of these metabolites 

through ML algorithm implementation resulted in highly superior metric parameters, which highlight 
their power as potential biomarker candidates for distinguishing cancer from non-cancer group. These 

findings highlight the potential of ML-based metabolomics in performing early, personalized breast 
cancer diagnosis, paving the way for targeted therapeutic strategies and improved patient outcomes. 

However, further validation in clinical cohorts remains crucial to confirm the identified biomarkers. 
Additionally, integrating these findings with multi-omics approaches may provide a more 

comprehensive understanding of breast cancer, advancing precision oncology efforts.  
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