

126

VOLUME 25 NO 02 2024, pp 126-137
ISSN : Print 1411-3724 — Online 2549-7464

DOI : https://doi.org/10.24036/eksakta/vol25-iss01/487

Eksakta : Berkala Ilmiah Bidang MIPA

 http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

Eksakta
Berkala Ilmiah Bidang MIPA

Article

Efficient 1D Heat Equation Solver: Leveraging Numba in

Python

Sandy Hardian Susanto Herho1*, Siti Nurzannah Kaban2,

Dasapta Erwin Irawan3, Rubiyanto Kapid4

1Department of Earth and Planetary Sciences, University of
California, Riverside, USA

2School of Architecture, Planning and Perservation, University
of Maryland, College Park, MD, USA

3Applied Geology Research Group, Bandung Institute of
Technology, Bandung, Indonesia

4Paleontology and Quaternary Geology Research Group,
Bandung Institute of Technology, Bandung, Indonesia

Abstract. This paper presents a Numba-based solver for the 1D Heat

Equation, seamlessly blending Python’s readability with Numba’s
dynamic Just-In-Time (JIT) compilation. The explicit method exhibits

a notable runtime reduction from 8.324 s to 4.035 s, while the implicit

method sees a more pronounced improvement, decreasing from 9.970
s to 1.195 s. Statistical tests confirm the statistical significance of these

efficiency gains. Future research directions include extending the

solver to multidimensional heat equations, exploring advanced

parallelization techniques, and implementing dynamic parameter
optimization strategies. Collaboration with domain experts for real-

world applications is also envisioned to validate the solver’s

performance and impact. In summary, the symbiosis of Python and
Numba in crafting an optimized 1D Heat Equation solver marks a

pivotal advancement in efficient numerical solutions. This research

holds promise for diverse scientific applications, ushering in a new era

of computational efficiency.

This is an open acces article under the CC-BY license.

This is an open access article distributed under the Creative Commons 4.0 Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited. ©2024 by author.

Corresponding Author :

Sandy Hardian Susanto Herho

Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
Email : sandy.herho@email.ucr.edu

Article Info

Article history :

Received January 08, 2024

Revised March 20, 2024
Accepted March 28,2024

Published June 30, 2024
(In Press)

Keywords :

Computational efficiency, finite

difference methods, numerical
PDE solver, numba optimization

mailto:sandy.herho@email.ucr.edu

127

 Efficient 1D Heat Equation Solver: Leveraging Numba in Python

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA

1. Introduction
The relentless pursuit of efficient numerical solutions to partial differential equations (PDEs) has been

a catalyzing force propelling significant strides in the field of scientific computing [1–3]. Amidst the
pantheon of these equations, the 1D Heat Equation emerges as a foundational model, wielding far-

reaching applications in diverse scientific realms, including physics and engineering. The precise
simulation of temporal heat evolution within a one-dimensional space is of paramount importance,

providing profound insights into an array of phenomena, ranging from the conductive intricacies of
materials to the nuanced thermal processes transpiring within electronic devices [4–8].

In response to this imperative, we navigate the intricate landscape of numerical computation,
spotlighting the critical need for a bespoke solver tailored specifically for the 1D Heat Equation. Our

focus converges on harnessing the transformative capabilities of Numba, a dynamic Just-In-Time (JIT)
compiler meticulously designed for the Python programming language [9]. Python, with its

unparalleled readability, versatility, and expansive library ecosystem, has rightfully claimed its
dominance in scientific computing [10-11]. However, the inherent interpretive nature of Python poses

challenges to computational speed. Enter Numba—an ingenious JIT compiler that dynamically
translates Python functions into machine code during runtime, thus conferring a substantial

performance boost. It is the symbiosis between Python’s inherent elegance and Numba’s
computational alacrity that forms the nucleus of our mission: to forge a solver that not only

encapsulates the aesthetic appeal of Python programming but also adeptly exploits the efficiency
afforded by Numba’s JIT compilation.

The numerical solution of PDEs is an intricate dance with algorithms, where optimization is the

linchpin, striking a harmonious balance between accuracy and computational efficiency. Crafting an
optimized solver for the 1D Heat Equation mandates a thoughtful consideration of numerical stability,

precision, and algorithmic efficiency. This paper embarks on a comprehensive expedition into the
labyrinth of challenges encountered during the optimization process, meticulously unfolding the

narrative of how Numba’s capabilities are judiciously harnessed to surmount these challenges and
elevate the solver’s overall performance.

A pivotal facet of our contribution lies in the granular presentation—a step-by-step expose´ of our
Numba-based solver for the 1D Heat Equation. Here, we unveil the intricacies of implementation,

expound upon optimization strategies, and subject the solver to rigorous performance evaluations.
Beyond its practical utility as a robust tool for researchers and practitioners immersed in heat transfer

simulations, our work extends its tendrils into the broader discourse on optimizing numerical methods
in Python. By illuminating the subtleties of our approach, we aspire to contribute to the evolving

understanding of how Numba can be judiciously employed to expedite scientific computations,
thereby forging a path towards more efficient and scalable solutions to PDEs within the Python

programming paradigm.

2. Methods

2.1. Numerical Experiments
The general form of the 3D heat equation was considered:

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 (1)

where T represents the temperature distribution in a three-dimensional space as a function of both

spatial coordinates (𝑥, 𝑦, 𝑧) and time (𝑡), 𝑡 denotes time, 𝛼 represents the thermal diffusivity of the

material, ∇2 is the Laplacian operator, defined as ∇2𝑇 ≡
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
.

128

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

Sandy Hardian Susanto Herho, et al.

The case was considered where the temperature distribution T was assumed to be solely a function

of one spatial coordinate, say 𝑥. Mathematically, 𝑇 ≡ 𝑇 (𝑥, 𝑡). This assumption simplified the

Laplacian operator to only the second spatial derivative:

∇2𝑇 =
𝜕2𝑇

𝜕𝑥2
 (2)

The simplified Laplacian for 1D was substituted into the 3D heat equation:

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
 (3)

The derived equation represents the 1D Heat equation. It describes the evolution of the

temperature distribution in a material along a single spatial dimension (𝑥) as a function of time (𝑡)
due to heat conduction. This equation is classified as a parabolic PDE.

In this study, equation (3) was numerically solved using both explicit and implicit methods of the

finite difference approach, a fundamental technique widely employed for approximating numerical
solutions of PDEs [12]. Additionally, the results obtained through these methods were analyzed to

gain insights into the behavior of the system.
In this study, we employed a discretization approach to model the behavior of temperature within

a spatial domain. The spatial discretization involves partitioning the domain into grid points, each

separated by a uniform grid spacing ∆𝑥. Specifically, we denote the temperature at each spatial point

𝑥𝑖 and time 𝑡𝑛 as 𝑇𝑖
𝑛.

For the temporal discretization using the explicit scheme, we utilized the forward difference for

time. The update formula is expressed as:

 𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 + 𝐶 (𝑇𝑖+1
𝑛 −2𝑇𝑖

𝑛 + 𝑇𝑖−1
𝑛) (4)

where 𝐶 =
𝛼∆𝑡

∆𝑥2
, representing the Courant–Friedrichs–Lewy (CFL) number [13-14]. The stability of

the explicit scheme is governed by the CFL condition, ensuring that 𝐶 ≤
1

2
 for numerical stability.

On the other hand, the implicit scheme employs the backward difference for time, leading to the

implicit update formula:

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 + 𝐶 (𝑇𝑖+1
𝑛+1−2𝑇𝑖

𝑛+1 + 𝑇𝑖−1
𝑛+1) (5)

The implicit scheme, while unconditionally stable, involves solving a system of equations at each
time step, introducing additional computational cost. To express the implicit scheme in a matrix form,
we defined a tridiagonal matrix A related to the discretization of the second spatial derivative. The

matrix equation becomes:

𝐴𝑇𝑛+1 = 𝑇𝑛 (6)

where 𝑇𝑛+1 is the vector of temperatures at the next time step, 𝑇𝑛 is the vector at the current time step,

and A is the tridiagonal matrix. The tridiagonal matrix A was constructed as follows:

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

129

 Efficient 1D Heat Equation Solver: Leveraging Numba in Python

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA

𝐴 =

(

1 + 2𝐶 −𝐶 0 ⋯ 0
−𝐶 1 + 2𝐶 −𝐶 … 0
0 −𝐶 1 + 2𝐶 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ −𝐶
0 0 … −𝐶 1 + 2𝐶)

 (7)

Each element Aij in the matrix represents the coefficients associated with the temperatures 𝑇𝑖
𝑛+1

in the implicit update formula. This comprehensive methodology enables the numerical simulation of

temperature evolution within the defined spatial domain.
In this study, the automated matrix calculation process utilized the NumPy library [15]. Dirichlet

boundary conditions were applied to both sides, with 𝑇𝑙𝑒𝑓𝑡 set to 20℃ and 𝑇𝑟𝑖𝑔ℎ𝑡 to 100℃ for

demonstration purposes (Figure 1). The material chosen was Plexiglass, characterized by a thermal

diffusivity of 0.2 𝑚2/𝑠 [16–18]. Users retain the flexibility to adjust these values as needed.

Figure 1. Schematic depicting heat transfer in a 1D cross-section, featuring Dirichlet
boundary conditions at both ends.

In this demonstration, the spatial range extends from 0 to 1 𝑚, with a spatial step size of 0.01 𝑚.

Employing the explicit method, a time step size of 0.00025 𝑠 was used within the temporal range from

0 to 1 𝑠, adhering to the upper limit of CFL stability criterion. Users are free to select their preferred

time step size for the implicit method.
In the Numba-based simulation, we applied the @jit(nopython=True, parallel=True) decorator

to optimize the numerical calculation scheme function. This decorator enabled the translation of the
code directly into machine language via LLVM [19], facilitating parallelization of the calculation

process. However, due to the current limitations of Numba, we chose not to parallelize the image
plotting process, particularly with dynamic functions from the Matplotlib library [20].

2.2. Statistical Analysis of the Total Runtime
In our experimental design, encompassing both control and test experiments, the former executed the

standard numerical algorithm without Numba optimizations, while the latter implemented the
Numba-optimized version. Each set of experiments underwent 100 iterations to bolster statistical

robustness. To quantify the impact of Numba optimization on computational efficiency, we employed
the hyperfine commandline benchmarking tool [21]. This tool facilitated precise measurement of

execution times for each iteration, offering a comprehensive understanding of Numba’s discernible
influence on overall computational efficiency. For our statistical analysis, we chose nonparametric

tests to accommodate the nature of the data and to ensure robustness against potential deviations from
normality assumptions.

130

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

Sandy Hardian Susanto Herho, et al.

To compare execution times between control and test experiments, we utilized the Mann-

Whitney U test [22], a nonparametric alternative suitable for scenarios where normality assumptions
may not be satisfied. The data from both samples were combined and ranked from smallest to largest.

Let 𝑈1 be the sum of ranks for the total runtime for control group, and 𝑈2 be the sum of ranks for the

total runtime of the test group. The 𝑈 statistic, given by 𝑈 = min (𝑈1, 𝑈2), provided a measure of the

difference between the groups. The expected value of 𝑈(𝔼(𝑈)) was calculated as:

𝔼(𝑈) =
𝑛1𝑛2
2

 (8)

This assessed the central tendency under the null hypothesis. The standard deviation of 𝑈(𝑆𝐷(𝑈)),
given by:

𝑆𝐷(𝑈) = √
𝑛1𝑛2(𝑛1+𝑛2 + 1)

12
 (9)

provided a measure of dispersion. The z-score, calculated as:

𝑧 =
𝑈 − 𝔼(𝑈)

𝑆𝐷(𝑈)
 (10)

was used to derive the p-value from a standard normal distribution. A significance level of 0.01 was

chosen for the test, and if 𝜌 < 0.01, the null hypothesis was rejected.

For the paired nature of our experiments, we employed the Wilcoxon signed-rank test [23], a
nonparametric test suitable for comparing paired samples when normality assumptions may not hold.

The absolute differences between paired observations were ranked, and positive and negative ranks

were summed separately. Let 𝑊+ be the sum of ranks for positive differences, and 𝑊− be the sum of

ranks for negative differences. The test statistic 𝑊, calculated as:

𝑊 = 𝑚𝑖𝑛(𝑊+, 𝑊−) (11)

represented the directionality of differences. The expected value of 𝑊(𝔼(𝑊)), given by:

𝔼(𝑊) =
𝑛(𝑛 + 1)

4
 (12)

where 𝑛 is the number of pairs, assessed the central tendency under the null hypothesis. The standard

deviation of 𝑊(𝑆𝐷(𝑊)), calculated as:

𝑆𝐷(𝑊) = √
𝑛(𝑛 + 1)(2𝑛 + 1)

24
 (13)

provided a measure of dispersion. The z-score, given by:

𝑧 =
𝑊 − 𝔼(𝑊)

𝑆𝐷(𝑊)
 (14)

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

131

 Efficient 1D Heat Equation Solver: Leveraging Numba in Python

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA

was used to determine the p-value from a standard normal distribution. Adopting a significance level

of 0.01, the null hypothesis was rejected if 𝜌 < 0.01.

The utilization of these nonparametric tests and their derivations played a pivotal role in
establishing dependable statistical inferences during our evaluation of Numba optimization’s effects.

This ensured the resilience and credibility of our findings within practical, real-world testing scenarios.
Widely employed in the analysis of numerical model outputs across diverse scientific domains [e. g.,

24–28], both of these statistical test methods were automatically implemented through the SciPy
library [29].

3. Results and Discussion
In Figure 2, the temporal evolution of temperature distribution is depicted utilizing an explicit scheme

with a fixed time step of ∆𝑡 = 0.00025𝑠. This graph illustrates the intricate changes in temperature
over time, providing a detailed insight into the dynamic behavior of the computational model within

the specified time range from 0 to 10. The explicit scheme showcases a high level of accuracy and
responsiveness, capturing fine-grained temporal dynamics inherent in the 1D Heat Equation. The

figure reveals the nuanced variations in temperature profiles over time, demonstrating the explicit
scheme’s capability to provide a detailed representation of the system’s behavior.

Figure 2. Temporal evolution of temperature distribution utilizing explicit scheme with

time step 𝛥𝑡 = 0.00025𝑠. The figure illustrates the dynamic changes in temperature

over time, providing a detailed insight into the computational model’s behavior
under the specified temporal resolution.

In contrast, Figure 3 shows the time-based evolution of temperature distribution using an implicit
scheme with various time steps. Each subplot provides a detailed comparison of the model's

performance at different time resolutions, highlighting the versatility of the implicit scheme. Notably,
even with larger time steps like ∆t=10s (refer to Figure 3), the implicit scheme shows convergence,

emphasizing its stability over a wide temporal range. We encourage the testing with different time
steps. This will provide a broader understanding of the potential variations in results and further

demonstrate the flexibility and robustness of our Numba-based solver. These experimental

132

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

Sandy Hardian Susanto Herho, et al.

adjustments will contribute significantly to the ongoing refinement and optimization of our solver,

ultimately leading to more accurate and efficient solutions in the field of scientific computing.
The comparison between Figure 2 and Figure 3 emphasizes that the implicit scheme maintains its

superiority even when considering single steps over the specified time range. The implicit scheme’s
ability to handle larger time steps without compromising convergence or accuracy positions it as a

robust and efficient choice for simulating the 1D Heat Equation, particularly in scenarios where
computational resources or time constraints necessitate the use of larger time steps.

While the implicit scheme shows promise, it's important to note the limitations of our study. There
are other parameters in the field, such as fluid dynamics or external heat sources, which we were not

able to incorporate due to resource constraints. These factors could influence the efficiency and
accuracy of the implicit scheme. Further research and more complex modeling are needed to fully

understand the practicality of using the implicit scheme in a wider range of real-world scenarios.

(a)

(b)

(c)

(d)

Figure 3. Temporal evolution of temperature distribution utilizing the implicit Scheme with

different time steps. (a) 𝛥𝑡 = 0.1𝑠, (b) 𝛥𝑡 = 0.25𝑠, (c) 𝛥𝑡 = 2.5𝑠, and (d) 𝛥𝑡 = 10𝑠.

These figures elucidate the dynamic changes in temperature over time, providing
comprehensive insights into the computational model’s behavior under distinct

temporal resolutions for the 1D Heat Equation.

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

133

 Efficient 1D Heat Equation Solver: Leveraging Numba in Python

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA

In evaluating the performance of our 1D Heat Equation simulation employing both explicit and

implicit methods, we undertook a comparative analysis of runtime metrics with and without the
integration of the Numba library. The explicit method, when executed without Numba, exhibited an

average total runtime of 8.324 s, with a standard deviation of 0.593 seconds and a range spanning
from 6.681 to 9.602 s. In contrast, the explicit method leveraging Numba demonstrated a substantial

enhance-ment, showcasing an average runtime of 4.035 s, a diminished standard deviation of 0.251 s,
and a narrower range between 3.524 and 4.744 s.

This observation suggests a notable acceleration in the overall computational efficiency facilitated
by Numba. Turning our attention to the implicit method, its execution without Numba resulted in an

average total runtime of 9.970 s, accompanied by a standard deviation of 0.967 s and a range varying
from 7.291 to 12.054 s. The incorporation of Numba into the implicit method led to a remarkable

improvement, yielding an average runtime of 1.195 s, a reduced standard deviation of 0.215 s, and a
narrower range spanning from 0.758 to 1.802 s. The most noteworthy acceleration in runtime was

observed in the implicit method, indicating that Numba has a particularly pronounced impact on this
scheme.

The effectiveness of Numba can be attributed to its ability to translate Python code directly into
machine language via LLVM, thereby bypassing the interpretative overhead associated with Python.

This direct translation contributes significantly to the efficiency gains observed in both explicit and
implicit methods. Furthermore, the parallelization process occurring behind the scenes, facilitated by

Numba, further enhances the computational speed. In the context of the implicit method, which
involves the recursive solution of a tridiagonal matrix structure, the inherent parallelizability of such
tasks results in a more substantial reduction in total runtime.

The visual representation of these findings is presented in Figure 4 and Figure 5, illustrating the
stark differences in total runtime between control experiments (without Numba) and test experiments

(with Numba) for the explicit and implicit schemes, respectively. The visualizations align with the
quantitative results, providing a comprehensive illustration of the efficiency gains achieved through

the integration of Numba.
These descriptive statistical results demonstrate that Numba significantly accelerates the total

runtime of 1D Heat Equation simulations across both explicit and implicit methods. While notable
improvements were observed in both schemes, the most rapid enhancement occurred in the implicit

method. This highlights the potential of Numba as a valuable tool for optimizing Python-based
numerical computing codes, particularly in scenarios involving intricate computations and recursive

structures.
The examination of results is underpinned by a meticulous analysis of discernible differences

between the control and test experiments. The vivid portrayal of these distinctions through distribution
boxplots, violin plots, and Empirical Cumulative Distribution Functions (ECDFs) in Figures 4 and 5

offers a rich visual narrative of the explicit and implicit schemes’ performance variations.
To rigorously evaluate the statistical significance of these disparities, we employed robust

statistical tests—specifically, the Mann-Whitney U test and the Wilcoxon Signed Rank test. The
Mann-Whitney U test yielded a consistent U statistics score of 10,000 for both explicit and implicit

schemes, accompanied by an impressively low p-value of <0.01. Simultaneously, the Wilcoxon Signed
Rank test consistently produced a W-statistics score of 0, again with a p-value <0.01. These findings

not only indicate statistical significance but also emphasize the reliability and stability of the observed
differences.

134

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

Sandy Hardian Susanto Herho, et al.

(a)

(b)

(c)

(d)

Figure 4. Total runtime for the 1D Heat Equation’s explicit scheme with Numba (test, red) and the
standard implementation (control, blue) over 100 runs, showcasing (a) distribution plots,
(b) boxplots, (c) violin plots, and (d) ECDFs, rendered using Matplotlib and seaborn [30].

The persistent U statistics scores of 10,000 for both schemes, coupled with identical p-values,

underscore the robustness of our results across different numerical methods. This uniformity in
statistical measures fortifies the argument for the consistent superiority of the optimized schemes.

However, we argue that robustness is more than just consistent statistical scores. It involves rigorous
testing, validation, and retesting with multiple datasets. This rigorous approach to robustness

strengthens our confidence in the superiority of the optimized schemes.
The W-statistics score of 0 further substantiates the claim of statistical significance, emphasizing

the reliability and stability of results across both explicit and implicit schemes. This score signifies a
high level of consistency in performance improvements, adding a layer of confidence to the conclusion

that the observed enhancements are not sporadic but systematically linked to the incorporation of
Numba. However, one could argue that a W-statistics score of 0 doesn't necessarily confirm statistical

significance. The reliability of results across both explicit and implicit schemes might be overstated.
This score doesn't necessarily indicate a consistent performance improvement, and it doesn't

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

135

 Efficient 1D Heat Equation Solver: Leveraging Numba in Python

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA

inherently bolster the conclusion. Thus, we recommend conducting further experiments using new

data.
In light of these statistically robust measures, we assert with confidence that the incorporation of

Numba yields a statistically significant optimization in accelerating the numerical solution of the 1D
Heat Equation. The p-values below 0.01 underline the robustness of the results, reinforcing the

assertion that the observed improvements are not coincidental but are indeed attributable to the
deliberate optimization strategy. This high level of statistical significance enhances the credibility of

our findings and underscores the effectiveness of leveraging Numba for augmenting the computational
efficiency of numerical methods applied to the 1D heat equation.

(a)

(b)

(c)

(d)

Figure 5. Total runtime for the 1D Heat Equation’s explicit scheme with Numba (test, red)
and the standard implementation (control, blue) over 100 runs, showcasing (a)

distribution plots, (b) boxplots, (c) violin plots, and (d) ECDFs, rendered using
Matplotlib and seaborn [30], for the implicit scheme.

4. Conclusion
Using Numba to optimize numerical solvers for the 1D Heat Equation has improved computational

efficiency. We've used Python's readability and Numba's JIT compilation to create a fast, versatile
solver. The application of Numba to both explicit and implicit finite difference methods led to

136

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta

Sandy Hardian Susanto Herho, et al.

significant runtime reductions. Looking ahead, the success of our Numba-based solver paves the way

for future research. We plan to expand the optimization to multidimensional heat equations and
further leverage Numba's efficiency. This involves optimizing Numba's parallelization techniques and

examining their effects on different methods and scalability.
We also plan to use Numba for dynamic parameter optimization, increasing versatility and

integrating it with advanced numerical methods or machine learning to enhance accuracy. We aim to
apply the optimized solver to various fields, like materials science and environmental modeling, and

collaborate with experts to validate its performance. In summary, our Numba-based solver provides
an efficient solution for the 1D Heat Equation with broad potential applications. As we tackle

multidimensional issues and apply our solver to real-world problems, the combination of Python and
Numba could revolutionize scientific computing.

5. Acknowledgments
This work was supported by the Dean’s Distinguished Fellowship at the University of California,

Riverside (UCR) 2023 and ITB Research, Community Services and Innovation Program (PPMI-ITB)
2023. The code and total runtime dataset for this paper are hosted on our GitHub:

https://github.com/sandyherho/1DHeatEqnNumba.

References
[1] Ewing, R. E., & Wang, H. (2001). A summary of numerical methods for time-dependent

advection-dominated partial differential equations. Journal of Computational and Applied

Mathematics, 128(1-2), 423-445.

[2] Fernández, D. C. D. R., Hicken, J. E., & Zingg, D. W. (2014). Review of summation-by-parts

operators with simultaneous approximation terms for the numerical solution of partial
differential equations. Computers & Fluids, 95, 171-196.

[3] Sharma, H., Patil, M., & Woolsey, C. (2020). A review of structure-preserving numerical
methods for engineering applications. Computer Methods in Applied Mechanics and Engineering,

366, 113067.

[4] Steinboeck, A., Wild, D., Kiefer, T., & Kugi, A. (2011). A fast simulation method for 1D heat

conduction. Mathematics and Computers in Simulation, 82(3), 392-403.

[5] Filbet, F., Negulescu, C., & Yang, C. (2012). Numerical study of a nonlinear heat equation for
plasma physics. International Journal of Computer Mathematics, 89(8), 1060-1082.

[6] Island, J. O., Molina-Mendoza, A. J., Barawi, M., Biele, R., Flores, E., Clamagirand, J. M., ...
& Castellanos-Gomez, A. (2017). Electronics and optoelectronics of quasi-1D layered transition

metal trichalcogenides. 2D Materials, 4(2), 022003.

[7] Barth, A., Newcombe, M., Plank, T., Gonnermann, H., Hajimirza, S., Soto, G. J., ... & Hauri,

E. (2019). Magma decompression rate correlates with explosivity at basaltic volcanoes—
Constraints from water diffusion in olivine. Journal of Volcanology and Geothermal Research, 387,

106664.
[8] Suárez-Carreño, F., & Rosales-Romero, L. (2021). Convergency and stability of explicit and

implicit schemes in the simulation of the heat equation. Applied Sciences, 11(10), 4468.

[9] Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A llvm-based python jit compiler. In

Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (pp. 1-6).

[10] Perez, F., Granger, B. E., & Hunter, J. D. (2010). Python: an ecosystem for scientific
computing. Computing in Science & Engineering, 13(2), 13-21.

[11] Kumar, R. (2015). Future for scientific computing using Python. International Journal of

Engineering Technologies and Management Research, 2(1), 30-41.

[12] Morton, K. W. (1976). Finite difference and finite element methods. Computer Physics

Communications, 12(1), 99-108.

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
https://github.com/sandyherho/1DHeatEqnNumba

137

 Efficient 1D Heat Equation Solver: Leveraging Numba in Python

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA

[13] Courant, R., Friedrichs, K., & Lewy, H. (1928). Über die partiellen Differenzengleichungen der

mathematischen Physik. Mathematische annalen, 100(1), 32-74.

[14] Moura, C. A. D., & Kubrusly, C. S. (2012). The Courant-Friedrichs-Lewy (CFL) condition: 80 years

after its discovery. Birkhäuser Basel.

[15] Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., ... & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362.

[16] Prinzen, S., Xuan, Y., & Roetzel, W. (1990). A simple measurement method of thermal
diffusivity using temperature oscillations. Wärme-und Stoffübertragung, 25, 209-214.

[17] Czarnetzki, W., & Roetzel, W. (1995). Temperature oscillation techniques for simultaneous
measurement of thermal diffusivity and conductivity. International Journal of Thermophysics, 16,

413-422.
[18] Pawlik, K., Kucharczyk, A., & Podpora, M. (2023). Method of determining thermal diffusivity

on the basis of measurements of linear displacements. Measurement, 211, 112624.

[19] Lattner, C., & Adve, V. (2004). LLVM: A compilation framework for lifelong program analysis

& transformation. In International symposium on code generation and optimization, 2004. CGO 2004.

(pp. 75-86). IEEE.
[20] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science & engineering,

9(03), 90-95.

[21] Herho, S., Kaban, S., Irawan, D., & Kapid, R. (2023). Efficient 1D Heat Equation Solver:

Leveraging Numba in Python.
[22] Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is

stochastically larger than the other. The annals of mathematical statistics, 50-60.

[23] Wilcoxon, F. (1947). Probability tables for individual comparisons by ranking methods.

Biometrics, 3(3), 119-122.

[24] Fuentes-Pérez, J. F., Quaresma, A. L., Pinheiro, A., & Sanz-Ronda, F. J. (2022). OpenFOAM

vs FLOW-3D: A comparative study of vertical slot fishway modelling. Ecological Engineering,

174, 106446.

[25] Gaur, S., Singh, R., Bandyopadhyay, A., & Singh, R. (2023). Diagnosis of GCM-RCM-driven

rainfall patterns under changing climate through the robust selection of multi-model ensemble
and sub-ensembles. Climatic Change, 176(2), 13.

[26] Newman, T., Borker, R., Aubiniere-Robb, L., Hendrickson, J., Choudhury, D., Halliday, I., ...
& Morris, P. D. (2023). Rapid virtual fractional flow reserve using 3D computational fluid

dynamics. European Heart Journal-Digital Health, 4(4), 283-290.

[27] Herho, S. H., Herho, K. E., & Susanto, R. D. (2023). Did hydroclimate conditions contribute

to the political dynamics of Majapahit?: A preliminary analysis. Geographica Pannonica, 27(3),

199-210.

[28] Uchikawa, H., Kin, T., Koizumi, S., Sato, K., Uchida, T., Takeda, Y., ... & Saito, N. (2023).
Aneurysmal Inflow Rate Coefficient Predicts Ultra-early Rebleeding in Ruptured Intracranial

Aneurysms: Preliminary Report of a Computational Fluid Dynamics Study. Neurologia medico-

chirurgica, 63(10), 450-456.

[29] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... &

Van Mulbregt, P. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature methods, 17(3), 261-272.

[30] Waskom, M. L. (2021). Seaborn: statistical data visualization. Journal of Open Source Software,

6(60), 3021.

