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Abstract. This paper presents a Numba-based solver for the 1D Heat 

Equation, seamlessly blending Python’s readability with Numba’s 
dynamic Just-In-Time (JIT) compilation. The explicit method exhibits 

a notable runtime reduction from 8.324 s to 4.035 s, while the implicit 

method sees a more pronounced improvement, decreasing from 9.970 
s to 1.195 s. Statistical tests confirm the statistical significance of these 

efficiency gains. Future research directions include extending the 

solver to multidimensional heat equations, exploring advanced 

parallelization techniques, and implementing dynamic parameter 
optimization strategies. Collaboration with domain experts for real-

world applications is also envisioned to validate the solver’s 

performance and impact. In summary, the symbiosis of Python and 
Numba in crafting an optimized 1D Heat Equation solver marks a 

pivotal advancement in efficient numerical solutions. This research 

holds promise for diverse scientific applications, ushering in a new era 

of computational efficiency.  

    
This is an open acces article under the CC-BY  license. 
 

 

This is an open access article distributed under the Creative Commons 4.0 Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. ©2024 by author. 

 
Corresponding Author : 

Sandy Hardian Susanto Herho 

Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA 
Email :  sandy.herho@email.ucr.edu 

 

 

 

 

Article Info 

 

 

 

Article history : 
 

Received January 08, 2024 

Revised March 20, 2024 
Accepted March 28,2024 

Published June 30, 2024 
(In Press) 

 

 

 

 
 
Keywords : 

Computational efficiency, finite 

difference methods, numerical 
PDE solver, numba optimization 

 

 

 

mailto:sandy.herho@email.ucr.edu


127 
 

 

  Efficient 1D Heat Equation Solver: Leveraging Numba in Python  

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA 

1. Introduction 
The relentless pursuit of efficient numerical solutions to partial differential equations (PDEs) has been 

a catalyzing force propelling significant strides in the field of scientific computing [1–3]. Amidst the 
pantheon of these equations, the 1D Heat Equation emerges as a foundational model, wielding far-

reaching applications in diverse scientific realms, including physics and engineering. The precise 
simulation of temporal heat evolution within a one-dimensional space is of paramount importance, 

providing profound insights into an array of phenomena, ranging from the conductive intricacies of 
materials to the nuanced thermal processes transpiring within electronic devices [4–8]. 

In response to this imperative, we navigate the intricate landscape of numerical computation, 
spotlighting the critical need for a bespoke solver tailored specifically for the 1D Heat Equation. Our 

focus converges on harnessing the transformative capabilities of Numba, a dynamic Just-In-Time (JIT) 
compiler meticulously designed for the Python programming language [9]. Python, with its 

unparalleled readability, versatility, and expansive library ecosystem, has rightfully claimed its 
dominance in scientific computing [10-11]. However, the inherent interpretive nature of Python poses 

challenges to computational speed. Enter Numba—an ingenious JIT compiler that dynamically 
translates Python functions into machine code during runtime, thus conferring a substantial 

performance boost. It is the symbiosis between Python’s inherent elegance and Numba’s 
computational alacrity that forms the nucleus of our mission: to forge a solver that not only 

encapsulates the aesthetic appeal of Python programming but also adeptly exploits the efficiency 
afforded by Numba’s JIT compilation. 

The numerical solution of PDEs is an intricate dance with algorithms, where optimization is the 

linchpin, striking a harmonious balance between accuracy and computational efficiency. Crafting an 
optimized solver for the 1D Heat Equation mandates a thoughtful consideration of numerical stability, 

precision, and algorithmic efficiency. This paper embarks on a comprehensive expedition into the 
labyrinth of challenges encountered during the optimization process, meticulously unfolding the 

narrative of how Numba’s capabilities are judiciously harnessed to surmount these challenges and 
elevate the solver’s overall performance. 

A pivotal facet of our contribution lies in the granular presentation—a step-by-step expose´ of our 
Numba-based solver for the 1D Heat Equation. Here, we unveil the intricacies of implementation, 

expound upon optimization strategies, and subject the solver to rigorous performance evaluations. 
Beyond its practical utility as a robust tool for researchers and practitioners immersed in heat transfer 

simulations, our work extends its tendrils into the broader discourse on optimizing numerical methods 
in Python. By illuminating the subtleties of our approach, we aspire to contribute to the evolving 

understanding of how Numba can be judiciously employed to expedite scientific computations, 
thereby forging a path towards more efficient and scalable solutions to PDEs within the Python 

programming paradigm. 
 

2. Methods 

2.1. Numerical Experiments 
The general form of the 3D heat equation was considered:  

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 (1) 

where T represents the temperature distribution in a three-dimensional space as a function of both 

spatial coordinates (𝑥, 𝑦, 𝑧) and time (𝑡), 𝑡 denotes time, 𝛼 represents the thermal diffusivity of the 

material, ∇2 is the Laplacian operator, defined as ∇2𝑇 ≡
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
. 
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The case was considered where the temperature distribution T was assumed to be solely a function 

of one spatial coordinate, say 𝑥. Mathematically, 𝑇 ≡  𝑇 (𝑥, 𝑡). This assumption simplified the 

Laplacian operator to only the second spatial derivative: 

∇2𝑇 =
𝜕2𝑇

𝜕𝑥2
 (2) 

The simplified Laplacian for 1D was substituted into the 3D heat equation: 

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
 (3) 

The derived equation represents the 1D Heat equation. It describes the evolution of the 

temperature distribution in a material along a single spatial dimension (𝑥) as a function of time (𝑡) 
due to heat conduction. This equation is classified as a parabolic PDE. 

In this study, equation (3) was numerically solved using both explicit and implicit methods of the 

finite difference approach, a fundamental technique widely employed for approximating numerical 
solutions of PDEs [12]. Additionally, the results obtained through these methods were analyzed to 

gain insights into the behavior of the system.  
In this study, we employed a discretization approach to model the behavior of temperature within 

a spatial domain. The spatial discretization involves partitioning the domain into grid points, each 

separated by a uniform grid spacing ∆𝑥. Specifically, we denote the temperature at each spatial point 

𝑥𝑖 and time 𝑡𝑛 as 𝑇𝑖
𝑛. 

For the temporal discretization using the explicit scheme, we utilized the forward difference for 

time. The update formula is expressed as: 

 𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 + 𝐶 (𝑇𝑖+1
𝑛 −2𝑇𝑖

𝑛 + 𝑇𝑖−1
𝑛 ) (4) 

where 𝐶 =
𝛼∆𝑡

∆𝑥2
, representing the Courant–Friedrichs–Lewy (CFL) number [13-14]. The stability of 

the explicit scheme is governed by the CFL condition, ensuring that 𝐶 ≤
1

2
 for numerical stability. 

On the other hand, the implicit scheme employs the backward difference for time, leading to the 

implicit update formula: 

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 + 𝐶 (𝑇𝑖+1
𝑛+1−2𝑇𝑖

𝑛+1 + 𝑇𝑖−1
𝑛+1) (5) 

The implicit scheme, while unconditionally stable, involves solving a system of equations at each 
time step, introducing additional computational cost. To express the implicit scheme in a matrix form, 
we defined a tridiagonal matrix A related to the discretization of the second spatial derivative. The 

matrix equation becomes: 

𝐴𝑇𝑛+1 = 𝑇𝑛 (6) 

where 𝑇𝑛+1 is the vector of temperatures at the next time step, 𝑇𝑛 is the vector at the current time step, 

and A is the tridiagonal matrix. The tridiagonal matrix A was constructed as follows: 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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𝐴 =

(

 
 

1 + 2𝐶 −𝐶 0 ⋯ 0
−𝐶 1 + 2𝐶 −𝐶 … 0
0 −𝐶 1 + 2𝐶 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ −𝐶
0 0 … −𝐶 1 + 2𝐶)

 
 

 (7) 

Each element Aij in the matrix represents the coefficients associated with the temperatures 𝑇𝑖
𝑛+1 

in the implicit update formula. This comprehensive methodology enables the numerical simulation of 

temperature evolution within the defined spatial domain. 
In this study, the automated matrix calculation process utilized the NumPy library [15]. Dirichlet 

boundary conditions were applied to both sides, with 𝑇𝑙𝑒𝑓𝑡 set to 20℃ and 𝑇𝑟𝑖𝑔ℎ𝑡 to 100℃ for 

demonstration purposes (Figure 1). The material chosen was Plexiglass, characterized by a thermal 

diffusivity of 0.2 𝑚2/𝑠 [16–18]. Users retain the flexibility to adjust these values as needed. 

 

 
 

Figure 1. Schematic depicting heat transfer in a 1D cross-section, featuring Dirichlet 
boundary conditions at both ends. 

 

In this demonstration, the spatial range extends from 0 to 1 𝑚, with a spatial step size of 0.01 𝑚. 

Employing the explicit method, a time step size of 0.00025 𝑠 was used within the temporal range from 

0 to 1 𝑠, adhering to the upper limit of CFL stability criterion. Users are free to select their preferred 

time step size for the implicit method. 
In the Numba-based simulation, we applied the @jit(nopython=True, parallel=True) decorator 

to optimize the numerical calculation scheme function. This decorator enabled the translation of the 
code directly into machine language via LLVM [19], facilitating parallelization of the calculation 

process. However, due to the current limitations of Numba, we chose not to parallelize the image 
plotting process, particularly with dynamic functions from the Matplotlib library [20]. 

 

2.2. Statistical Analysis of the Total Runtime 
In our experimental design, encompassing both control and test experiments, the former executed the 

standard numerical algorithm without Numba optimizations, while the latter implemented the 
Numba-optimized version. Each set of experiments underwent 100 iterations to bolster statistical 

robustness. To quantify the impact of Numba optimization on computational efficiency, we employed 
the hyperfine commandline benchmarking tool [21]. This tool facilitated precise measurement of 

execution times for each iteration, offering a comprehensive understanding of Numba’s discernible 
influence on overall computational efficiency. For our statistical analysis, we chose nonparametric 

tests to accommodate the nature of the data and to ensure robustness against potential deviations from 
normality assumptions. 
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To compare execution times between control and test experiments, we utilized the Mann-

Whitney U test [22], a nonparametric alternative suitable for scenarios where normality assumptions 
may not be satisfied. The data from both samples were combined and ranked from smallest to largest. 

Let 𝑈1 be the sum of ranks for the total runtime for control group, and 𝑈2 be the sum of ranks for the 

total runtime of the test group. The 𝑈 statistic, given by 𝑈 = min (𝑈1, 𝑈2), provided a measure of the 

difference between the groups. The expected value of 𝑈(𝔼(𝑈)) was calculated as: 

𝔼(𝑈) =
𝑛1𝑛2
2

 (8) 

This assessed the central tendency under the null hypothesis. The standard deviation of 𝑈(𝑆𝐷(𝑈)), 
given by:  

𝑆𝐷(𝑈) = √
𝑛1𝑛2(𝑛1+𝑛2 + 1)

12
 (9) 

provided a measure of dispersion. The z-score, calculated as: 

𝑧 =
𝑈 − 𝔼(𝑈)

𝑆𝐷(𝑈)
 (10) 

was used to derive the p-value from a standard normal distribution. A significance level of 0.01 was 

chosen for the test, and if 𝜌 < 0.01, the null hypothesis was rejected. 

For the paired nature of our experiments, we employed the Wilcoxon signed-rank test [23], a 
nonparametric test suitable for comparing paired samples when normality assumptions may not hold. 

The absolute differences between paired observations were ranked, and positive and negative ranks 

were summed separately. Let 𝑊+ be the sum of ranks for positive differences, and 𝑊−  be the sum of 

ranks for negative differences. The test statistic 𝑊, calculated as: 

𝑊 = 𝑚𝑖𝑛(𝑊+, 𝑊−) (11) 

represented the directionality of differences. The expected value of 𝑊(𝔼(𝑊)), given by: 

𝔼(𝑊) =
𝑛(𝑛 + 1)

4
 (12) 

where 𝑛 is the number of pairs, assessed the central tendency under the null hypothesis. The standard 

deviation of 𝑊(𝑆𝐷(𝑊)), calculated as: 

𝑆𝐷(𝑊) = √
𝑛(𝑛 + 1)(2𝑛 + 1)

24
 (13) 

provided a measure of dispersion. The z-score, given by: 

𝑧 =
𝑊 − 𝔼(𝑊)

𝑆𝐷(𝑊)
 (14) 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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was used to determine the p-value from a standard normal distribution. Adopting a significance level 

of 0.01, the null hypothesis was rejected if 𝜌 < 0.01. 

The utilization of these nonparametric tests and their derivations played a pivotal role in 
establishing dependable statistical inferences during our evaluation of Numba optimization’s effects. 

This ensured the resilience and credibility of our findings within practical, real-world testing scenarios. 
Widely employed in the analysis of numerical model outputs across diverse scientific domains [e. g., 

24–28], both of these statistical test methods were automatically implemented through the SciPy 
library [29]. 

 

3. Results and Discussion 
In Figure 2, the temporal evolution of temperature distribution is depicted utilizing an explicit scheme 

with a fixed time step of ∆𝑡 = 0.00025𝑠. This graph illustrates the intricate changes in temperature 
over time, providing a detailed insight into the dynamic behavior of the computational model within 

the specified time range from 0 to 10. The explicit scheme showcases a high level of accuracy and 
responsiveness, capturing fine-grained temporal dynamics inherent in the 1D Heat Equation. The 

figure reveals the nuanced variations in temperature profiles over time, demonstrating the explicit 
scheme’s capability to provide a detailed representation of the system’s behavior. 

 
 

Figure 2. Temporal evolution of temperature distribution utilizing explicit scheme with 

time step 𝛥𝑡 = 0.00025𝑠. The figure illustrates the dynamic changes in temperature 

over time, providing a detailed insight into the computational model’s behavior 
under the specified temporal resolution. 

 

In contrast, Figure 3 shows the time-based evolution of temperature distribution using an implicit 
scheme with various time steps. Each subplot provides a detailed comparison of the model's 

performance at different time resolutions, highlighting the versatility of the implicit scheme. Notably, 
even with larger time steps like ∆t=10s (refer to Figure 3), the implicit scheme shows convergence, 

emphasizing its stability over a wide temporal range. We encourage the testing with different time 
steps. This will provide a broader understanding of the potential variations in results and further 

demonstrate the flexibility and robustness of our Numba-based solver. These experimental 
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adjustments will contribute significantly to the ongoing refinement and optimization of our solver, 

ultimately leading to more accurate and efficient solutions in the field of scientific computing. 
The comparison between Figure 2 and Figure 3 emphasizes that the implicit scheme maintains its 

superiority even when considering single steps over the specified time range. The implicit scheme’s 
ability to handle larger time steps without compromising convergence or accuracy positions it as a 

robust and efficient choice for simulating the 1D Heat Equation, particularly in scenarios where 
computational resources or time constraints necessitate the use of larger time steps. 

While the implicit scheme shows promise, it's important to note the limitations of our study. There 
are other parameters in the field, such as fluid dynamics or external heat sources, which we were not 

able to incorporate due to resource constraints. These factors could influence the efficiency and 
accuracy of the implicit scheme. Further research and more complex modeling are needed to fully 

understand the practicality of using the implicit scheme in a wider range of real-world scenarios. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Temporal evolution of temperature distribution utilizing the implicit Scheme with 

different time steps. (a) 𝛥𝑡 = 0.1𝑠, (b) 𝛥𝑡 = 0.25𝑠, (c) 𝛥𝑡 = 2.5𝑠, and (d) 𝛥𝑡 = 10𝑠. 

These figures elucidate the dynamic changes in temperature over time, providing 
comprehensive insights into the computational model’s behavior under distinct 

temporal resolutions for the 1D Heat Equation. 
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In evaluating the performance of our 1D Heat Equation simulation employing both explicit and 

implicit methods, we undertook a comparative analysis of runtime metrics with and without the 
integration of the Numba library. The explicit method, when executed without Numba, exhibited an 

average total runtime of 8.324 s, with a standard deviation of 0.593 seconds and a range spanning 
from 6.681 to 9.602 s. In contrast, the explicit method leveraging Numba demonstrated a substantial 

enhance-ment, showcasing an average runtime of 4.035 s, a diminished standard deviation of 0.251 s, 
and a narrower range between 3.524 and 4.744 s.  

This observation suggests a notable acceleration in the overall computational efficiency facilitated 
by Numba. Turning our attention to the implicit method, its execution without Numba resulted in an 

average total runtime of 9.970 s, accompanied by a standard deviation of 0.967 s and a range varying 
from 7.291 to 12.054 s. The incorporation of Numba into the implicit method led to a remarkable 

improvement, yielding an average runtime of 1.195 s, a reduced standard deviation of 0.215 s, and a 
narrower range spanning from 0.758 to 1.802 s. The most noteworthy acceleration in runtime was 

observed in the implicit method, indicating that Numba has a particularly pronounced impact on this 
scheme. 

The effectiveness of Numba can be attributed to its ability to translate Python code directly into 
machine language via LLVM, thereby bypassing the interpretative overhead associated with Python. 

This direct translation contributes significantly to the efficiency gains observed in both explicit and 
implicit methods. Furthermore, the parallelization process occurring behind the scenes, facilitated by 

Numba, further enhances the computational speed. In the context of the implicit method, which 
involves the recursive solution of a tridiagonal matrix structure, the inherent parallelizability of such 
tasks results in a more substantial reduction in total runtime. 

The visual representation of these findings is presented in Figure 4 and Figure 5, illustrating the 
stark differences in total runtime between control experiments (without Numba) and test experiments 

(with Numba) for the explicit and implicit schemes, respectively. The visualizations align with the 
quantitative results, providing a comprehensive illustration of the efficiency gains achieved through 

the integration of Numba. 
These descriptive statistical results demonstrate that Numba significantly accelerates the total 

runtime of 1D Heat Equation simulations across both explicit and implicit methods. While notable 
improvements were observed in both schemes, the most rapid enhancement occurred in the implicit 

method. This highlights the potential of Numba as a valuable tool for optimizing Python-based 
numerical computing codes, particularly in scenarios involving intricate computations and recursive 

structures. 
The examination of results is underpinned by a meticulous analysis of discernible differences 

between the control and test experiments. The vivid portrayal of these distinctions through distribution 
boxplots, violin plots, and Empirical Cumulative Distribution Functions (ECDFs) in Figures 4 and 5 

offers a rich visual narrative of the explicit and implicit schemes’ performance variations. 
To rigorously evaluate the statistical significance of these disparities, we employed robust 

statistical tests—specifically, the Mann-Whitney U test and the Wilcoxon Signed Rank test. The 
Mann-Whitney U test yielded a consistent U statistics score of 10,000 for both explicit and implicit 

schemes, accompanied by an impressively low p-value of <0.01. Simultaneously, the Wilcoxon Signed 
Rank test consistently produced a W-statistics score of 0, again with a p-value <0.01. These findings 

not only indicate statistical significance but also emphasize the reliability and stability of the observed 
differences. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Total runtime for the 1D Heat Equation’s explicit scheme with Numba (test, red) and the 
standard implementation (control, blue) over 100 runs, showcasing (a) distribution plots, 
(b) boxplots, (c) violin plots, and (d) ECDFs, rendered using Matplotlib and seaborn [30]. 

 
The persistent U statistics scores of 10,000 for both schemes, coupled with identical p-values, 

underscore the robustness of our results across different numerical methods. This uniformity in 
statistical measures fortifies the argument for the consistent superiority of the optimized schemes. 

However, we argue that robustness is more than just consistent statistical scores. It involves rigorous 
testing, validation, and retesting with multiple datasets. This rigorous approach to robustness 

strengthens our confidence in the superiority of the optimized schemes. 
The W-statistics score of 0 further substantiates the claim of statistical significance, emphasizing 

the reliability and stability of results across both explicit and implicit schemes. This score signifies a 
high level of consistency in performance improvements, adding a layer of confidence to the conclusion 

that the observed enhancements are not sporadic but systematically linked to the incorporation of 
Numba. However, one could argue that a W-statistics score of 0 doesn't necessarily confirm statistical 

significance. The reliability of results across both explicit and implicit schemes might be overstated. 
This score doesn't necessarily indicate a consistent performance improvement, and it doesn't 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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inherently bolster the conclusion. Thus, we recommend conducting further experiments using new 

data. 
In light of these statistically robust measures, we assert with confidence that the incorporation of 

Numba yields a statistically significant optimization in accelerating the numerical solution of the 1D 
Heat Equation. The p-values below 0.01 underline the robustness of the results, reinforcing the 

assertion that the observed improvements are not coincidental but are indeed attributable to the 
deliberate optimization strategy. This high level of statistical significance enhances the credibility of 

our findings and underscores the effectiveness of leveraging Numba for augmenting the computational 
efficiency of numerical methods applied to the 1D heat equation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 5. Total runtime for the 1D Heat Equation’s explicit scheme with Numba (test, red) 
and the standard implementation (control, blue) over 100 runs, showcasing (a) 

distribution plots, (b) boxplots, (c) violin plots, and (d) ECDFs, rendered using 
Matplotlib and seaborn [30], for the implicit scheme. 

 

4. Conclusion 
Using Numba to optimize numerical solvers for the 1D Heat Equation has improved computational 

efficiency. We've used Python's readability and Numba's JIT compilation to create a fast, versatile 
solver. The application of Numba to both explicit and implicit finite difference methods led to 
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significant runtime reductions. Looking ahead, the success of our Numba-based solver paves the way 

for future research. We plan to expand the optimization to multidimensional heat equations and 
further leverage Numba's efficiency. This involves optimizing Numba's parallelization techniques and 

examining their effects on different methods and scalability. 
We also plan to use Numba for dynamic parameter optimization, increasing versatility and 

integrating it with advanced numerical methods or machine learning to enhance accuracy. We aim to 
apply the optimized solver to various fields, like materials science and environmental modeling, and 

collaborate with experts to validate its performance. In summary, our Numba-based solver provides 
an efficient solution for the 1D Heat Equation with broad potential applications. As we tackle 

multidimensional issues and apply our solver to real-world problems, the combination of Python and 
Numba could revolutionize scientific computing. 
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