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Abstract. One of the most prevalent cancers in Indonesia is breast 
cancer, based on Indonesia's pathological-based registration.    Breast 

cancer is a complex, heterogeneous disease classified into hormone-
receptor-positive, human epidermal growth factor receptor-2 

overexpressing (HER2+) and triple-negative breast cancer (TNBC) 

based on histological features. Patients with HR+, HER2- Early Breast 

Cancer (EBC) do not experience recurrence or recurrence for a long 
time with currently available standard therapy [11]. However, up to 

30% of patients with high-risk clinical and/or pathological features 

may experience a relapse in the first few years. This results in the need 
for research and development regarding updates in medicine both in 

terms of treatment and targets and drug compounds used. The c-Jun 

N-terminal kinase (JNK) protein functions in signaling and influences 

the apoptotic pathway as well as cancer cell survival. In this study, an 
insilico screening experiment of inhibitory compounds was carried out 

on the JNK protein receptor target by screening compounds and 

molecular docking of compounds for breast cancer therapy.Two novel 
herbal compounds, Mangostin and ent-Copalyl Dyphospate, have the 

potential to be turned into medicines that may cause apoptosis through 

JNK protein targets according to an in-silico-based molecular 

simulation technique.  
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1. Intoduction 
Breast cancer is a most common cancer in the world, It is caused by of malignancy breast tissue that 
originates from the ductal epithelium or lobules [1-2]. Based on Pathological Registration in 

Indonesia, breast cancer is one of the most common types of cancer in Indonesia with a relative 
frequency of 18.6% in women and breast cancer is the most prevalent cancer [3-5]. Breast cancers 

differ in their clinical behavior and treatment responses due to the heterogeneity of their morphologic 
and biological characteristics. Based on the molecular and pathological type of breast cancer, it is 

classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), human 
epidermal growth factor receptor 2 (HER2), histological grade, and multigene prognostic tests [6-7].  

Breast cancer is a complex, heterogeneous disease classified into hormone-receptor-positive, 
human epidermal growth factor receptor-2 overexpressing (HER2+) and triple-negative breast cancer 

(TNBC) based on histological features [8-10]. Endocrine therapy, the mainstay of treatment for 
hormone-responsive breast cancer involves use of selective estrogen receptor modulators (SERMs), 

selective estrogen receptor downregulation (SERDs) and aromatase inhibitors (AIs). Agents that target 
estrogen receptor (ER) and HER2 such as tamoxifen and trastuzumab have been the most extensively 

used therapeutics for breast cancer [11-12]. Patients with HR+, HER2- Early Breast Cancer (EBC) do 
not experience recurrence or recurrence for a long time with currently available standard therapy [13]. 

However, up to 30% of patients with high-risk clinical or pathological features may experience a 
relapse in the first few years. This results in the need for research and development regarding updates 
in medicine both in terms of treatment and targets and drug compounds used [11]. In addition to the 

need for new methods and targets in treatment. Crosstalk between ER and other signaling networks 
as well as epigenetic mechanisms have been envisaged to contribute to endocrine therapy resistance. 

HER2, a complex, heterogeneous, aggressive form of breast cancer in which the cells express targeted 
hormone is refractory to therapy [14-16].  

Several molecular targets are being explored to target HER2 including androgen receptor, 
epidermal growth factor receptor (EGFR), poly(ADP-ribose) polymerase (PARP), and vascular 

endothelial growth factor (VEGF). Receptors, protein tyrosine kinases, phosphatases, proteases, 
PI3K/Akt signaling pathway, microRNAs (miRs) and long noncoding RNAs (lncRNAs) are potential 

therapeutic targets [17-18]. Inflammatory cytokines, thermal shock, oxidative stress, osmotic stress, 
and UV irradiation are a few of the stimuli that might activate the JNK pathway. When JNK is 

activated, it phosphorylates several proteins on particular serine and threonine residues that are 
followed immediately by a proline residue. This regulates a range of cellular functions, such as cellular 

proliferation, differentiation, survival, and apoptosis. JNK plays a dual role in regulating the ratio of 
apoptosis to proliferation, and the result of JNK activation is influenced by the cellular environment 

and the particular stimuli. The JNK signaling pathway has been linked to a variety of 
pathophysiological illnesses, including cancer, diabetes, autoimmune diseases, and neurodegenerative 

diseases. Because of this, JNK is a therapeutic target for many disorders [19-20]. 
Superior treatment options are needed to prevent early relapse and the development of 

metastases for this group of patients [21-22]. The c-Jun N-terminal kinase (JNK) protein functions in 
signaling and influences the apoptotic pathway as well as cancer cell survival [12]. Emerging evidence 

suggests that JNK promotes tumor development and is involved in a variety of cancers, including 
human pancreatic, lung, and breast cancer. In-silico drug design consist of theoretical and 

computational approaches can be used to identify novel hits or leads against selected biological active 
macromolecules. Nowadays, computer aided drug design (CADD) approach like pharmacophore 

modeling, virtual screening and molecular docking approaches are widely used to discover, develop, 
and analyze drugs and similar biologically active molecules. In this study, an insilico screening 

experiment of inhibitory compounds was carried out on the JNK protein receptor target by screening 
compounds and molecular docking of compounds for breast cancer therapy [11, 23-24]. 

 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta


101 
 

 

  Pharmacophore Modeling, Molecular Docking, and the ADMET Approach for the Identification 

of Anti-Cancer Agents Targeting the Protein C-Jun N-Terminal Kinase (JNK) Protein 

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA 

2. Experimental Section 
The experimental section based on firoz, dkk method [25], this workflow describes the steps in 
screening Hit Compound and finding the active site in the target protein. 

 

 
Figure 1. Pharmacophore modeling and molecular docking JNK-Protein workflow 

 

2.1. Materials and Methods 

2.1.1 Structure and Ligand-Based Pharmacophore 
The HerbalDb Compound Library, a library of herbal compounds from Indonesia from the FMUI 
Department Pharmacy, was used as the compound database. The database is downloaded from the 

website's server (http://herbaldb.farmasi.ui.ac.id/v3) to retrieve the data. Using an algorithm and the 
Liganscout 4.3 software, a pharmacophore model-based ligand screening was produced. Using decoy 

chemicals supplied from the Useful Decoys Database (DUDe) online site, the final model was 
additionally cross screened. The ROC curve and AUC values utilized for model validation were 

acquired from screening results based on the pharmacophore model [25-26]. 
The base structure uses the JNK protein (4L7F) obtained from the protein data bank server 

(https://www.rcsb.org/). The best compound with the highest binding affinity (kcal/mol) was 
selected for structure-based pharmacophore modeling. The highest-scoring compounds in complexes 

with JNK proteins are used to interact with natural compounds. The results of screening compounds 
based on ligands and protein structures will produce compounds called hit compounds [27]. 

 

2.1.2 Molecular Docking 
The hit compounds obtained from the pharmacophore screening were carried out by molecular 

tethering using software including AutoDock and AutoDock Vina with the Lamarckian genetic 
algorithm (LGA) as an assessment function. This study uses PyRx AutoDock Vina tools to carry out 
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molecular docking interactions. The resulting docking compounds with better binding affinity 
(kcal/mol) were extracted and visualized using BIOVA Discovery Studio Visualizer Tool 16.1. [28-

29]. 
 

2.1.3 Analysis of the ADME-TOX  
Evaluation of Absorption, Distribution, Metabolism, and Excretion (ADME) properties is one of the 
main criteria before developing a molecule into a drug. Previously, many drug candidates could not 

meet the demand for clinical trials, so computer-based prediction was important for the early stages 
of prediction. Physicochemical properties, hydrophobicity, lipophilicity, gastrointestinal 

environment, and the blood-brain barrier are directly affected by the ADME profile before the drug is 
excreted from the body via urine and feces [14]. The freely accessible Swiss-ADME server 

(http://www.swissadme.ch/) was used to evaluate ADME properties such as the solubility profile, 
GIT absorption, and bioavailability profile of the selected compounds [15]. 

 

3. Results and Discussion 

3.1 Ligand-Based Pharmacophore 
The herbal_db database is a curated collection of commercially available chemical compounds where 
we can get information on the molecular weights, chemical structures, and physical and chemical 

properties of biologically active macromolecules. It contains more than 230 million compounds that 
can be purchased in a 3D format to freely accessible websites, ready to be used for further analysis 

[16]. Screening results from the herbal_db database with the pharmacophore model were carried out 
using the screening perspective method as shown in Figure 2. Then the results of the compounds with 

the best-fit scores were obtained which could be used for further analysis in the form of docking and 
admetox simulations[30-32]. 

 Model validation is needed to obtain authentic pharmacophore analysis and to evaluate the 
quality of molecular models. The structure- and ligand-based pharmacophore model produced in this 

study was validated prior to database screening to evaluate whether the selected model was able to 
distinguish the active compound from the test set. The pharmacophore model was validated using 20 

active compounds as a test set and 1200 decoy compounds obtained from the Useful decoys Database 
(DUDe). From a total of 32 drug compounds that were considered to have gone through phase III, 

they were separated into 2 groups of test sets and training sets. Active test sets with constant inhibitor 
IC50 values were combined with test compounds and initial screening was run to validate the model. 

The performance of classification models such as AUC values and EF values of compounds is 
estimated from receiver operating characteristic (ROC) curves. In general, ROC is a probability graph 

that states the performance of a classification model that can provide an overview of the degree of 
separation, where AUC is used to describe a summary of model performance. Models with higher 

AUC values should have better predictability. AUC values range between 0 and 1, so a model whose 
prediction rate is 100% correct has an AUC value of 1. In our validation process, the initial enrichment 

factor (EF1%) is 5.1 with AUC (area below ROC) a very good value for the curve in the threshold of 
1% is 0.83 , which proves that the pharmacophore model has the ability to distinguish the actual active 

substance from the training compound [33-35]. 
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Figure 2. ROC curve model pharmacophore (Liganscout) 

 

The results of the screening of ligand-based pharmacophore compounds with the specified 
pharmacophore model were then screened with the herbalDB database. Obtained 10 compounds that 

have features similar to the validation model. 
 

3.2 Pharmacophore Structure Based 
The validated protein structure can be downloaded from the protein database or homology modeling 
can be done to determine the 3D model of a protein. To identify the antagonists to the x-ray structure 

of protein desirability protein Jnk (PDB: 4L7F) crystals and a structure-based pharmacophore model 
for the enzymatic cavity was generated. The 3D and 2D structures are displayed as shown in the image 

obtained from the RSCB PDB webserver [36]. 

 
Figure 3. JNK protein structure (Pdb: www.rcsb.org/structure/4L7F) 

 
The protein structure is known to have one chain with one native ligand. With the identification 

of the structure using the X-Ray method and a resolution of 1.55A, this is good because it is still below 
2A which is the maximum resolution sharpness limit for proteins needed in molecular docking [37]. 
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The ligand binding capacity of selected 4L7F proteins was determined experimentally. An 
Overall expression can be regulated by binding of the inhibitor to the active site of the JNK protein. 

Because sometimes the ability of the proper inhibitor against any protein may be unreliable due to 
improper binding. Thus, determination of the active series of inhibitors should be checked for 

sufficient interactions to obtain more biological activity compared to the existing ones. 
LigandScout4.3 advanced important molecular design software was used to generate key chemical 

features based on the pharmacophore model [38-39]. In this process, 8 interaction features were 
obtained on the 417F protein which can interact with several amino acids [16]. As shown in the image, 

screening is carried out by removing the H2O group at the native ligand binding position with the 
protein. Some of the amino acids that have potential biological interactions with ligand compounds 

are shown in figure 4. 

   
(a)                (b) 

Figure 4. (a) 3D structure 8 interaction features were obtained on the 417F, (b) 2D 8 
interaction features were obtained on the 417F (LigandScout4.3) 

 

Based on the results of screening with the herbal_db database, compounds were obtained that 
could bind to the amino acid position that interacted with the native ligand. Some of these compounds 

include: 
 

Table 1. Screening compound from ligan and structure pharmacophore screening 

     Compound 

Dehydrosafynol.mol  Chlorogenic acid.mol 

Safynol.mol Violaxanthin.mol 

beta-Citraurin.mol Capsorubin.mol 

Kuwanon T.mol 6-Shogaol.mol 

Geraniol.mol Octadienoyl-4-deoxyphorbol 13-acetate.mol 

9-Ribosyl-cis-zeatin.mol Dehydrosafynol.mol 

ent-Copalyl diphosphate.mol Anacyclin.mol 

Mangostin.mol Spilanthol.mol 

 
From the two screening approaches, 17 compounds were taken to be followed by further molecular 

docking processes. 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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3.3 Molecular Docking 
Molecular docking is an important part of the drug design process, which is carried out in studies to 
evaluate the binding ability of hit compounds to target proteins. The 4L7F monomer protein already 

has an active group which is the native ligand attachment site, the position of the ligand is then 
matched to the hits compound. The protein was prepared and the receptor lattice with a grid box of 

60 x 60 x 60 size with coordinates (x, y, z) -4.963, 54.083, 4.844. Some of the hit’s compounds that 
are suspected to have high pharmocophore fits and have a match with the receptor were selected and 

docked on the 4L7F protein and a binding energy value, RMSD and inhibition constant were listed. 
In the molecular docking process, it is also carried out by comparing the results of binding energy 

values, RMSD and inhibition constants with native ligands and also positive control compounds 
which are drug compounds that have been circulating in the market.  

It is known that the top three compounds that have the best values of binding energy, RMSD 
and inhibition constant are ent-Copalyl diphosphate with binding energy -10.31, and inhibition 

constant of 27.63 nM (nanomolar) (Temperature = 298.15 K) and RMSD 52.147 A, this value is 
obtained at the 5th run position out of a total of 10 runs assigned to each run for all docking 

interactions for each compound, Capsorubin with a binding energy value of -11.59 inhibition constant 
3.19 nM (nanomolar) (Temperature = 298.15 K) and RMSD value of 32.825 A on running to 3 out 

of 10 runs, Mangostin with an energy binding value of -10.35 , an inhibition constant of 25.70 nM 
(nanomolar) (Temperature = 298.15 K) and an RMSD value of 47.515 A in the 8th running, of the 
three compounds which had the lowest binding energy value, further analysis was carried out, namely 

analysis protein–ligand interactions [40-42]. 
 

Table 2. Molecular docking results from 17 compund, native ligand and positive control with   protein 
(JNK): Binding energy, RMSD and constanta inhibition value 

No Compound 
Binding energy 

(kcal/mol) 

Constant inhibition 

[Temperature = 298.15 K] 
RMSD 

1 Native Ligan -12.09 1.37 nM  0.77 A 

2 Dehydrosafynol.mol -  -5.28 135.90 uM   52.840 A 

3 Safynol.mol -5.33 124.43 uM   49.230 A 

4 beta-Citraurin.mol -10.43 22.71 nM   46.089 A 

5 Kuwanon T.mol -10.25 30.54 nM   53.130 A 

6 Geraniol.mol -5.37 115.58 uM  53.111 A 

7 9-Ribosyl-cis-zeatin.mol -6.51 16.98 uM   53.228 A 

8 ent-Copalyl diphosphate.mol -10.31 27.63 nM  52.147 A 

9 Mangostin.mol -10.35 25.70 nM   47.515 A 

10 Chlorogenic acid.mol -7.77 2.01 uM   48.565 A 

11 Violaxanthin.mol -10.70 14.32 nM   52.384 A 

12 Capsorubin.mol -11.59 3.19 nM   32.825 A 

13 6-Shogaol.mol -7.20 5.29 uM    49.738 A 

14 Deoxyphorbol3-acetate.mol -9.74 72.54 nM   46.474 A 

15 Dehydrosafynol.mol -5.31 128.76 uM   52.547 A 

16 Anacyclin.mol -7.19 5.33 uM   41.034 A 

17 Spilanthol.mol -7.40 3.75 uM   47.794 A 

18 Gallocatechin-epicatechin.mol -8.27 873.88 nM  48.507 A 

19 Pollenitin.mol -7.91 1.59 uM  54.630 A 

20 Kontrol (Abemaciclib) -10.87 10.77 nM  54.775 A 
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Based on analysis of protein ligand interactions from the top 3 compounds, native ligand and 
positive control. There are several amino acids which are always the sites of interaction for each 

compound, such as met111(A), leu110(A), and ile32(A). Compounds that have similar interactions 
with native ligands and positive control are ent-Copalyl diphosphate because they have the same 

hydrogen bonds with native ligands at the amino acid position lys55(A) and interact with van der 
Walls interactions with amino acids met108, met111, leu168, val40, ile32, ser34, ala113, leu110 and 

ala53.  
Then other compounds that also have interactions similar to native ligands and positive control 

compounds are mangostin, mangostin has hydrogen bonds with Asn114 and Gln117 which are amino 
acids that also interact van der Wals with control compounds and native ligands, several other amino 

acids also interact by van der wals interactions with mangostin compounds and also into amino acids 
that interact with control compounds and native ligands such as: met108, met111, leu168, val40, ile32, 

ser34, ala113, leu110 ala53, and glu09. Whereas casporubin interacts with van der Walls interactions 
with several other amino acids and only a few are the same as the native ligand and its control 

compounds. These protein-ligand interactions were visualized in 2D and 3D using Marvin Sketch and 
Autodock Vina. 
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Figure 5.  Interaction visualization control (Abemaciclib), native ligan, Capsorubin, Mangostin, 
ent Copalyl Dyphosphate with protein 4L7F (BIOVIA) 
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3.4 Adme-Tox 
  Analysis of drug-like properties was carried out using the SwissADME program, Absorption, 
distribution, metabolism, excretion, and toxicity profile predictions were carried out using Swiss-

ADME server. Analysis of drug-like properties and ADMET prediction of the compounds capsorubin, 
mangostin, and ent-copalyl diphosphate was carried out by entering the SMILES list or the Simplified 

Molecular Input Line Entry Specification. 
 

Table 3. Admetox result from swiss ADME server 

 
Analysis of drug-like properties resulted in a score of compound properties against the Lipinski 

rule which included the molecular weight of the compound, the value of the log P partition coefficient, 
the number of hydrogen bond donors, and the number of hydrogen bond acceptors. ADMET profile 

prediction shows various profiles of absorption, distribution, metabolism, excretion, and toxicity. The 
prediction of these properties includes absorption, distribution, metabolism, excretion, and toxicity 

[6]. In several journals, it is known that Alpha-Mangostin can downregulate the c-JUN N-terminal 
kinase (JNK) pathway thereby inhibiting the ROS-mediated apoptotic pathway [43]. Mangostin 

regulates downstream effectors of the PI3K/AKT signaling pathway by decreasing RXRα/tRXRα. 

Mangostin can trigger PARP cleavage and induce apoptosis, and inhibit the development of breast 
cancer metastasis [44-45].  

 

4. Conclusion 
Two novel herbal compounds, Mangostin and ent-Copalyl Dyphospate, have the potential to be 
turned into medicines that may cause apoptosis through JNK protein targets according to an in-silico-

based molecular simulation technique. In comparison to native ligands and their positive control, 
compounds were chosen based on the strength of their interactions with proteins and binding energies. 

This molecule conforms with the Lipinski rule criteria based on the in-silico toxicity test, and it has 
low toxicity based on the pharmacokinetic and toxicity testing. 
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