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Abstract. Economics is one of the most important fields for a country. 
One of the activities that illustrate the importance of the economy in 

a country is an investment. Investment activities, especially stock 
investment, are included in the capital market activities that various 

age groups currently carry out. Stocks are generally known to have 

high-risk, high-return characteristics. Therefore we need a way to 

minimize losses in investing. This study uses time series analysis 
theory to analyze LQ45 stock data.The data used is the closing price 

of PT. Bank Central Asia, Tbk. obtained from finance.Yahoo.com. 

The results of this study indicate that the return of daily closing price 
data of PT. Bank Central Asia, Tbk. during the period 2017-2021, 

there are heteroscedasticity and asymmetric shocks, so variations of 

the ARCH/GARCH model are needed to obtain accurate forecasting 

results. One suitable model is Threshold GARCH (TGARCH). The 
results of this study indicate that the suitable forecasting model for the 

data is the MA(3)-TGARCH(1,1) model. The model produces 

forecasts with an accuracy rate based on MAPE of 0.895% for the next 
seven days 
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1. Introduction 
Economics is one of the most important fields for a country. One of the activities that illustrate the 

importance of the economy in a country is capital market activities that various age groups currently 
carry out. The capital market is for different long-term products that can be traded. The capital market 

instruments traded include stocks, bonds, mutual funds, exchange-traded funds (ETFs), and various 
other derivative products. Investment is an activity related to the withdrawal of resources (funds) used 

for the procurement of capital goods at this time, and with capital goods, new product flows will be 
generated in the future. In stock investing, an investor expects a level of profit from the results of his 

investment, which is called stock return. To reduce stock investment losses, it’s necessary to make 
stock predictions [1-3].  

Stock prediction has been done by many researchers using various models and methods. Khan 
and Alghulaiakh has done prediction of Netflix stock starting from 7 April 2015 to 7 April 2020 using 

ARIMA model. Challa et al.[4] has done forecasts the return and volatility dynamics of S&P BSE 
Sensex and S&P BSE IT indices of the Bombay Stock Exchange using ARIMA model. Monika et 

al.[5] has done rainfall prediction in Bandung City using ARIMA-ARCH model. Rita et al.[6] has 
done analyze seasonal pattern of stock return using ARCH-GARCH model. Endri at al.[7] has done 

prediction of Indonesian stock market volatility using GARCH model. Emenogu et al.[8] has done 
investigates the volatility of the stock price of Total Nigeria Plc using nine variants of GARCH models. 

Sunday et al.[9] has done Modelling the Efficiency in Nigeria Inflation Rate using TGARCH model. 
The ARIMA model has a constant variance, so the ARIMA model cannot capture the 

heteroscedasticity of stock price returns which have a high level of volatility. The ARCH/GACRH 

model can overcome the problem of heteroscedasticity but has a weakness in capturing the asymmetric 
phenomena of good news and bad news on volatility. In some financial cases, there is a difference in 

the amount of volatility in the return value, which is called asymmetry. The asymmetry occurs in the 
form of a negative or positive correlation between the current return value and future volatility [10-

12]. The negative correlation between the return value and changes in volatility is the tendency of 
volatility to decrease when returns increase, and conversely, the tendency of volatility to increase 

returns decreases. This study uses a variation of the ARCH/GARCH model, namely the TGARCH 
(Threshold-GARCH) model, to see whether the model contains an asymmetric effect [13-15]. 

 

2. Literature Review 

2.1 Stock Return 
Stock return is the profit individuals, agencies, or companies receive from the investments made. The 

return of a stock can be calculated using the following equation [16]: 

𝑟𝑡 = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
) (1) 

Where, 

𝑟𝑡  : return value at time 𝑡 

𝑃𝑡 : stock price at time 𝑡 

𝑃𝑡−1  : stock price at time (𝑡 − 1). 

 

2.2 Stationary Data 
One way to check the stationarity of a data can be done by using the Augmented Dickey Fuller (ADF) 

unit root test [17]. The ADF test hypothesis is as follows: 

𝐻0 ∶ 𝛿 = 0 (there is a unit root, the data is not stationary) 

𝐻1 ∶ 𝛿 < 0 (no unit root, data is stationary) 
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Statistics test, 

�̂� =
�̂�

𝑠𝑒(�̂�)
 

(2) 

Where, 

�̂�  : parameter estimate value of 𝛿 

𝑠𝑒(�̂�) : standar error of �̂�.  

The test criteria, reject 𝐻0 if �̂� > 𝑡𝑘𝑟𝑖𝑡𝑖𝑠 or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < significant value 𝛼, it means the data is 

stationary, accept 𝐻0 in other ways. 
 

2.3 Box-Jenkins Model 

Table 1. Box-Jenkins Model 

Name Model Equation Model 
Autoregressive (AR) Model 𝑍𝑡  =  𝑐 + 𝜙1𝑍𝑡−1 + 𝜙2𝑍𝑡−2 + ⋯ +  𝜙𝑝𝑍𝑡−𝑝  +  𝑒𝑡  

Moving Average (MA) Model 𝑍𝑡  = 𝜇 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 

Model Autoregressive Moving 
Average (ARMA) Model 

𝑍𝑡 = 𝑐 + 𝜙1𝑍𝑡−1 + ⋯ +  𝜙𝑝𝑍𝑡−𝑝  +  𝑒𝑡 − 𝜃1𝑒𝑡−1 − ⋯

− 𝜃𝑞𝑒𝑡−𝑞 

Model Autoregressive Integrated 

Moving Average (ARIMA) Model 
𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃0 + 𝜃𝑞(𝐵)𝑒𝑡   , 

 
Where, 

𝑐     : a constant 

𝜙𝑖   : AR parameter model (𝑖 =  1,2,3, . . , 𝑝) 

𝜃𝑖   : MA parameter model (𝑖 =  1,2,3, . . , 𝑞) 

𝑒𝑡−𝑞   : error value at time to (𝑡 − 𝑞) 

𝐵   : back shift operator 

(1 − 𝐵)𝑑𝑍𝑡  : stationary time series at the d difference (differencing operator) 

𝒑  : AR model order 

𝒒  : MA model order 

𝒅  : differencing order 
 

2.4 Parameter of Box Jenkins Model Estimation 

One way to estimate the parameters of the Box-Jenkins model is the Maximum Likelihood Estimation 
method. The probability function can be written as follows [18] : 

𝐿(𝜃) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃) = ∏ 𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

 (3) 

The log of the likelihood function is: 

𝑙(𝜃) = log 𝐿(𝜃) = log ∏ 𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

= ∑ log 𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

   
(4) 

The value of 𝜃 which can be obtained by means of 
𝜕(log 𝐿(𝜃))

𝜕𝜃
= 0.  

 

2.5 Box Jenkins Model Diagnostics 

For checking whether the residual assumptions in the model have been met for the assumption of 
white noise using the Ljung-Box test [19]. White Noise test with the hypothesis used are: 

𝐻0: 𝜌1 = 𝜌2 = ⋯ = 𝜌𝑘 = 0 (non-autocorrelated residual / white noise)  
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𝐻1: there is at least one 𝜌𝑘 ≠ 0 (autocorrelated residual / not white noise)  

Test Statistics, 

𝑄 = 𝑛(𝑛 + 2) ∑
𝜌𝑘

2

𝑛 − 𝑘

𝑚

𝑘=1

 
(6) 

The test criteria, reject 𝐻0 if 𝑄 > 𝜒𝑡𝑎𝑏𝑙𝑒
2  or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 = 0.05, accept 𝐻0 in other ways. 

 

2.6 Best Box-Jenkins Model Selection 
Determination of the better or most optimum model is by looking at the AIC (Akaike Information 

Criterion) value in the model. The best model is the model that has the smallest AIC value. The 
equation for determining the AIC value as follows [20]: 

AIC = 2𝑘 − 2 ln �̂�𝑎
2, (7) 

 Where, 𝑘 is number of parameters. 
 

2.7 Heteroscedasticity Effect Test 
To identify whether in a time series data there is a heteroscedasticity effect or not, the Lagrange 

Multiplier Test can be used [21]. The hypotheses used are: 

𝐻0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑝 = 0  (there is no Heteroscedasticity effect) 

𝐻1: there is at least one 𝛼𝑖 ≠ 0 (there is a Heteroscedasticity effect) 
 

Test Statistics, 

𝐿𝑀 = 𝑛𝑅2   , (8) 

where, 𝑅2 is the coefficient of determination in the model. 

The test criteria, reject 𝐻0 if 𝐿𝑀 > 𝜒𝛼,𝑘
2  or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 which means that there is a 

Heteroscedasticity effect, accept 𝐻0 in other ways. 
 

2.8 Generalized Autoregressive Conditional Heteroscedastic (GARCH) 
The GARCH(p,q) model is an extension of the ARCH(p) model, this model was developed by 
Bollerslev and Taylor (1986). The GARCH(p,q) model is formulated as follows [22]: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝑒𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

   , 

𝑒𝑡 = 𝜎𝑡𝜖𝑡 

(9) 

where 𝑒𝑡~𝑁(0, 𝜎𝑡
2).  

𝜔, 𝛼𝑖, 𝛽𝑗 : parameter model  

𝑒𝑡   : residual at time 𝑡  

𝜎𝑡
2  : residual variance at time t  

 

2.9 Asymmetric Effect 
The asymmetric nature is the difference in price increases or decreases in prices, commonly referred 
to as leverage effects. The asymmetric effect is the tendency of decreasing and increasing the level of 

volatility when returns increase and vice versa. One way to test the asymmetric effect is to model the 
time series data into a GARCH model and then test whether the model has an asymmetric effect by 

looking at the correlation between the lag residual (𝒆𝒕−𝒌) and the squared residual (𝒆𝒕
𝟐) using cross 

correlation. If a bar exceeds the standard deviation, the cross-correlation value is significantly different 
from zero, which means that it has an asymmetric effect on volatility [23]. 
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2.10 Threshold Generalized Autoregressive Conditional Heteroscedastic (TGARCH) 
The TGARCH model was introduced by Glosten, Jagannathan, and Runkle (1993) and Zakoian 
(1994). The TGARCH(p,q) model can be formulated as follows [24]: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖  𝑒𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛾𝑖𝑁𝑡−𝑖  𝑒𝑡−𝑖
2

𝑝

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

 

(10) 

with,  

𝛼𝑖 , 𝛾𝑖 , 𝛽𝑗  : parameter model 

𝛾𝑖  : leverage effect 

𝑁𝑡−𝑖 = {
1,   𝑎𝑡−𝑖 < 0
0,   𝑎𝑡−𝑖 ≥ 0

   .  

 

2.11 Determination of Forecasting Accuracy 
Forecasting attempts to predict future conditions by testing past conditions. Forecasting carried out is 

expected to minimize the value of forecasting errors that can be measured by mean error (ME), mean 
absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), and root 

mean squared error (RMSE) [25-27]. In this study using Mean Absolute Percent Error (MAPE) with 
the following formula: 

MAPE =
∑ |

𝑍𝑡 − �̂�𝑡
𝑍𝑡

| × 100%𝑛
𝑡=1

𝑛
   . 

(11) 

According to Lewis (1982) in Lawrence[28], the MAPE criteria in the level of forecasting 
accuracy are explained as follows: 

Table 2. Value of MAPE  

MAPE Description 

MAPE ≤ 10% Forecasting ability is very accurate 

10% < MAPE ≤ 20% Forecasting ability is accurate 

20% < MAPE ≤ 50% Forecasting ability is quite accurate 

MAPE > 50% Forecasting ability is not accurate 

 

3. Results Methods 
In this research, the data source used stock price data of PT Bank Central Asia Tbk. daily stock price 
data for five years, starting from 1 January 2017 to 31 December 2021. Data obtained from 

YahooFinance web. Based on the description above, this research using ARIMA-TGARCH model 
for predicting stock returns of PT Bank Central Asia Tbk. This research is expected to overcome the 

problem of asymmetric nature in the financial case. 
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Research Implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of research implementation 

Start 

Collecting Data 

Calculating return value 

Checking 

data 

stationarity 

Differencing 

No 

Yes 

Formation of the Box-

Jenkins Model 

Selection of the best 

Box-Jenkins Models 

Checking 

Heteroscedasticity Effect 
Formation of the GARCH 

Model 

Checking Asymmetric 

Effect 

Formation of the 

TGARCH Model 

Forecasting Data 

No 
No 

Yes 

Yes 

Determination of 

forecasting accuracy 

Finish 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta


277 
 

 

  Application of Threshold Generalized Autoregressive Conditional Heteroscedastic  

(TGARCH) Model in Forecasting the LQ45 Stock Price Return 

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA 

4. Results and Discussion 

4.1 Descriptive analysis  
The data used in this research is the daily closing price of PT Bank Central Asia Tbk. starting from 

January 1, 2017 to December 31, 2021. The data plot is presented in Figure 1. 
 

 
Figure 2. Plot of BBCA’s Stock Closing Price  

Based on Figure 2, it can be seen that each stock data fluctuates and has high volatility. It’s known 
that the data is not stationary because the plot shows an uptrend and a downtrend. Because the BBCA 

data is not stationary, the differencing process will be done by finding the return value. The return 
value of BBCA's daily closing price is as follows: 

𝑟1 = ln (
𝑃2

𝑃1
) = ln (

3155

3100
) = 0.017586 

In the same way it can be calculated to obtain a BBCA return of 1061. The plot of return is 
presented in Figure 3. 

 

 
Figure 3. Plot of BBCA’s Stock Price Return 

Based on Figure 3, it can be seen that the movement of returns fluctuates from year to year. In 

financial or financial theory, this event is called clustering volatility, a condition where the direction 
of time series data tends to rise or fall drastically and suddenly under certain conditions or 

circumstances. 
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4.2 Data Stationary Test 
To ensure stationary, we can use the ADF test presented in Table 3. 

 

Table 3. ADF Test Results from BBCA Stock Price Return Data 

Stationary Test 𝑝 − 𝑣𝑎𝑙𝑢𝑒 (𝛼 = 0.05) 

Augmented Dickey Fuller 0.01 

 

Based on Table 3, obtained 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.01 less than the test level 𝛼 =  0.05, so the decision to 

reject 𝐻0 means that the return data is stationary. 

 

4.3 Formation of the Box-Jenkins Model 
Identification of the Box-Jenkins model can be seen based on the ACF and PACF plots. The plot results are 
presented in Figure 4 and Figure 5. 

 
Figure 4. Plot of ACF BBCA’s Return Stock Price  

 
Figure 5. Plot of PACF BBCA’s Reurn Stock Price  

Based on Figure 4 and Figure 5, the ACF plot is interrupted at lags 1 and 3, the model formed 

from the ACF plot is MA(1) and MA(3), then the PACF plot is interrupted at lags 1 and 3, the model 
formed from the PACF plot is AR(1) and AR(3). After obtaining the prospective model, parameter 

estimation and parameter significance tests are carried out, which are presented in Table 4. 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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Table 4. Estimation and Formation Results of Box-Jenkins Model Parameters 

Model Parameter Parameter Estimation p-value 
White 

Noise 
AIC 

AR(1) 
Intercept 0.00067912 0.9145 

Yes -6959.08 
𝜙1 -0.06666739  

AR(3) 

Intercept 0,00067899 

0.9534 Yes -6962.46 
𝜙1 -0,06689178 

𝜙2 -0,04121806 

𝜙3 0,06141449 

MA(1) 
Intercept 0.00067905 0.9348 

Yes -6959.55 
𝜃1 0.07189250  

MA(3) 

Intercept 0.00067905  

Yes -6962.33 
𝜃1 -0.06307210 0.942 

𝜃2 -0.04028932  

𝜃3 0.06653538  

ARMA(1,1) 

Intercept 0.00067204  

Yes -6958.05 𝜙1 0.17608913 0.9397 

𝜃1 -0.24709708  

ARMA(1,3) 

Intercept 0.00067834  

Yes -6961.40 

𝜙1 -0.34456577  

𝜃1 0.27980404 0.9937 

𝜃2 -0.06115911  

𝜃3 0.05387566  

ARMA(3,3) 

Intercept 0.00069388  

Yes -6959.76 

𝜙1 -0.36345336  

𝜙2 0.45281801  

𝜙3 0.61153894 0.7003 

𝜃1 0.30964262  

𝜃2 -0.51426482  

𝜃3 -0.56359915  
 

A good Box-Jenkins model is a model that fulfils the assumption that the residuals are white noise 
or non-autocorrelated residuals. A test is carried out using the Q-Ljung Box test to determine whether 

the residual is white noise. Based on Table 4, all the candidates for the Box-Jenkins model meet the white 
noise assumption (no autocorrelation residue). Then the selection of the best Box-Jenkins model can be seen 

from the model that has the smallest AIC value. The model that has the smallest AIC value is the MA(3) model, 
so it can be concluded that the best Box-Jenkins model is the MA(3) model. 
 

4.4 Heteroscedasticity Effect Test 
Testing the effect of heteroscedasticity was carried out using the Lagrange Multiplier test which is 
presented in Table 5. 

 

Table 5. Identification Results of the Effect Heteroscedasticity in Box-Jenkins Model 

Model 
Heteroscedasticity 

test 
X-Squared p-value Description 

MA(3) Lagrange Multiplier 16.577 4.671 × 10−5 There is a heteroscedasticity effect 

 

Based on Table 5, the results of the Lagrange Multiplier test show that the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
 0.0004671 is smaller than the level 𝛼 =  0.05. So the MA(3) model has a heteroscedasticity effect. 
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4.5 Formation of the GARCH Model 
The parameter estimation results for the GARCH(p,q) model are presented in Table 6. 

Tabel 6. Estimate and Formation Results of GARCH Model Parameters 

Model Parameter 
Parameter 

Estimation 
AIC 

MA(3)-

GARCH(1,1) 

Intercept 0.001004 

-5.7588 

𝜃1 -0.145670 

𝜃2 -0.066756 

𝜃3 0.001279 

𝜔 0.000013 

𝛼1 0.101980 

𝛽1 0.834965 

MA(3)-

GARCH(1,2) 

Intercept 0.001004 

-5.7572 

𝜃1 -0.145648 

𝜃2 -0.066766 

𝜃3 0.001338 

𝜔 0.000013 

𝛼1 0.101843 

𝛽1 0.834989 

𝛽2 0.000002 

MA(3)-

GARCH(2,1) 

Intercept 0.000999 

-5.7573 

𝜃1 -0.145015 

𝜃2 -0.067030 

𝜃3 0.001476 

𝜔 0.000014 

𝛼1 0.094760 

𝛼2 0.012237 

𝛽1 0.824721 

MA(3)-

GARCH(2,2) 

Intercept 0.000989 

-5.7565 

𝜃1 -0.144198 

𝜃2 -0.068761 

𝜃3 0.005493 

𝜔 0.000025 

𝛼1 0.091036 

𝛼2 0.099150 

𝛽1 0.000000 

𝛽2 0.687480 

 
Based on Table 6, the best GARCH model is selected by looking at the smallest AIC value. The 

best GARCH model is MA(3)-GARCH(1,1) because the parameters contained in the model have the 
smallest AIC value is -5.7588. 

 

4.6 Asymmetric Effect Test 
To find out whether the data is asymmetrical or not, it is tested by cross-correlation between 

𝑒𝑡
2(squared residual) and 𝑒𝑡−𝑝(lag residual) which will be presented in Figure 5. 
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281 
 

 

  Application of Threshold Generalized Autoregressive Conditional Heteroscedastic  

(TGARCH) Model in Forecasting the LQ45 Stock Price Return 

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA 

 
Figure 6. Cross-Correlation result of squared residual with residual lag 

Based on Figure 6, some bars exceed the Bartlet line, which means there is an asymmetric effect 

on the BBCA closing price return data, so the GARCH model cannot be used. Overcoming the model 
that has asymmetrical conditions can be done with the Threshold GARCH (TGARCH) model. 

 

4.7 Formation TGARCH Model 
The parameter estimation results for the TGARCH(p,q) model are presented in Table 7. 

Table 7. Estimate and Significance Test Results of TGARCH Model Parameters 

Model Parameter 
Parameter 

Estimation 
AIC 

MA(3)-TGARCH(1,1) 

Intercept 0.000659 

-5.7777 

𝜃1 -0.134855 

𝜃2 -0.062073 

𝜃3 -0.000623 

𝜔 0.000831 

𝛼1 0.093171 

𝛽1 0.873729 

𝛾𝑖 0.591583 

MA(3)-TGARCH(1,2) 

Intercept 0.000659 

-5.7761 

𝜃1 -0.134851 

𝜃2 -0.062077 

𝜃3 -0.000622 

𝜔 0.000831 

𝛼1 0.093177 

𝛽1 0.873712 

𝛽2 0.000010 

𝛾1 0.591597 

MA(3)-TGARCH(2,1) 

Intercept 0.000679 

-5.7764 

𝜃1 -0.133300 

𝜃2 -0.059947 

𝜃3 0.002312 

𝜔 0.000923 

𝛼1 0.088969 

𝛼2 0.019384 

𝛽1 0.827759 

𝛾1 0.355507 

𝛾2 0.999979 
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MA(3)-TGARCH(2,2) 

Intercept 0.000688 

-5.7750 

𝜃1 -0.132903 

𝜃2 -0.060804 

𝜃3 0.002550 

𝜔 0.001033 

𝛼1 0.102366 

𝛼2 0.021936 

𝛽1 0.627291 

𝛽2 0.177384 

𝛾1 0.361320 

𝛾2 0.999978 

 

Based on Table 8, the best TGARCH model is selected by looking at the smallest AIC value. The 
best TGARCH model is MA(3)-TGARCH(1,1) because the parameters contained in the model have 

the smallest AIC value of -5.7777. The equation of the MA(3)- TGARCH(1,1) model is as follows: 

𝑟𝑡 = 0.000659 − 0.134855𝑎𝑡−1 − 0.062073𝑎𝑡−2 

𝜎𝑡
2 = 0.000831 + (0.093171 + 0.591583Nt−1)𝑎𝑡−1

2 + 0.873729𝜎𝑡−1
2  

𝑁𝑡−𝑖 = {
1,   𝑎𝑡−𝑖 < 0
0,   𝑎𝑡−𝑖 ≥ 0

    
(13) 

 

3.8 Forecasting Accuracy Calculation 
After getting the best model for BBCA returns, then evaluate the accuracy of the MA(3)-

TGARCH(1,1) forecasting model that has been formed with BBCA return observation data using 
MAPE (Mean Absolute Percent Error), which is presented in Table 8.  

 

Table 8. Evaluation Results of MA(3)-TGARCH(1,1) Model with MAPE 

Period Return Actual Return Forecast |
𝑍𝑡 − �̂�𝑡

𝑍𝑡

| × 100% 

3 Januari 2022 0.003418807 0.0013214 0.613490876 % 
4 Januari 2022 0.010186845 0.0007644 0.924962049 % 

5 Januari 2022 0.006734032 0.0006603 0.901945821 % 

6 Januari 2022 0.003350087 0.0006593 0.803199134 % 
7 Januari 2022 0.023141529 0.0006593 0.971510093 % 

10 Januari 2022 -0.006557401 0.0006593 1.10054289 % 

11 Januari 2022 0.013072082 0.0006593 0.949564268 % 

∑ |
𝑍𝑡 − �̂�𝑡

𝑍𝑡

| × 100%

𝑛

𝑡=1

 6.265215131 % 

MAPE 0.895030733 % 

 

Based on Table 8, the results of forecasting the model with MAPE have a value of 0.895030733%. 
Referring to Table 2 that the MA(3)-TGARCH(1,1) forecasting model is said to have very good 
forecasting ability. 

 

5. Conclusion 
The data used in this research is the daily stock return of PT. Bank Central Asia Tbk. By conducting 

the analysis, including ACF, PACF, heteroscedasticity, and asymmetric effect of the collected data, 
we obtained the proper model for forecasting is MA(3)-TGARCH(1,1). The level of accuracy of 

forecasting the return value of PT. Bank Central Asia Tbk. with the model MA(3)-TGARCH(1,1) for 
the next seven periods using MAPE obtained 0.895030733% said to have outstanding forecasting 

ability. 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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