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Abstract. The number of infant mortality cases is data in the form of 
counts which is modeled by Poisson regression. There is an 

assumption that needs to be met, namely equidispersion. 

Equidispersion is a condition in which the mean and variance of the 
variables are the same, but in practice this assumption is often not met. 

There are two possible events, namely overdispersion and 

underdispersion. The Generalized Poisson Regression (GPR) model 

is one solution to solve this problem. In estimating the GPR 
parameter, the Maximum Likelihood Estimation (MLE) method is 

used, but the derivation of the log-likelihood function does not always 

produce explicit results, so the Newton-Raphson iteration method is 
used. Poisson regression analysis conducted on the number of infant 

mortality cases in West Java showed that the model had 

overdispersion as seen from the value of the dispersion parameter 

which was more than zero, so the GPR model was used. Parameter 
significance test was carried out on three factors, namely the poverty 

gap index (𝑋1), the percentage of low birth weight infants (𝑋2), and 

the percentage of exclusive breastfeeding for infants (𝑋3) the results 

obtained that all factors affected the number of infant mortality cases 

in West Java. 
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1. Introduction 
Infant mortality is an important indicator to see the degree of health in a community because the body 

of a newborn is very sensitive to the environment, so an increase in infant mortality can indicate a 
problem in the environment. There are many factors that can influence infant mortality. These factors 

can come from environmental conditions, maternal health, or congenital conditions such as low birth 
weight (LBW), respiratory infections, and a combination of neonatal disorders (babies less than 28 

days old). 
In Indonesia, the number of infant mortality is relatively high, namely 24 deaths per 1000 births. 

Reporting from Databoks.katadata.co.id (2021), in Indonesia in 2020, from a total of 28 thousand 
babies who died, there were 20 thousand babies (71.97%) died in the age range 0 to 28 days and as 

many as 5 thousand Infants (19.13%) died in the age range of 29 days to 11 months. On the other 
hand, one of the provinces that contributes the most infant mortality is West Java (Pikiran-rakyat.com, 

2016). 
To reduce the number of infant mortality, preventive measures are needed. Steps that can be taken 

by mothers is to give breast milk to the baby. From Sehatnegeriku.kemkes.go.id (2017), breastfeeding 
can reduce infant mortality due to infection by 88%. Another way to reduce infant mortality is to 

analyze the factors that influence it. The analysis that can be used to see the relationship between 
variables is regression analysis. The number of infant mortality cases is data in the form of count data 

which is definitely positive. The event can occur at a certain time with a small probability of 
happening. By looking at this, the number of infant mortality cases can be said to have a Poisson 
distribution. As the name implies, to model data with a Poisson distribution, Poisson regression is 

used. 
In Poisson regression there is an assumption that needs to be met, namely equidispersion. 

Equidispersion is a condition where the mean and variance of the dependent variable are the same, 
but in practice this assumption is often not met [1-3]. The variance and mean values are often different 

which is a violation of poisson regression. These violations include cases of overdispersion and 
underdispersion. Overdispersion is an event where the value of the variance is greater than the mean 

value, while underdispersion is the opposite where the value of the variance is lower. The Generalized 
Poisson Regression (GPR) model is one solution to solve this problem. This is because the GPR model 

takes into account the dispersion factor in the model. The GPR model is also more flexible for data 
whose dispersion type is unknown [4-6]. 

There have been many studies on the application of GPR. Modeling the data of the American-
Egyptian center which is the number of diseases using GPR while used GPR to overcome 

overdispersion in maternal mortality data [7-8]. From the research of [9], it was found that the Akaike's 
Information Criterion (AIC) value of the GPR model is smaller than the Poisson regression model so 

that the GPR model is better in modeling the data. 
In finding the estimated value of the GPR model parameters, the Maximum Likelihood 

Estimation (MLE) method is usually used, but according to [10-11], the derivation of the likelihood 
function does not always produce explicit results, so we use additional methods to get a convergent 

parameter estimator. Research conducted by [10-11] used the Iteratively Weighted Least Square 
(IWLS) method as an addition to estimating the parameters, but in this study the MLE method was 

used with additional Newton-Raphson iterations to obtain the estimated parameters of the GPR 
model.  

The formulas contained in the Newton-Raphson iteration method cannot be directly applied to 
the data, so the process requires formula derivation. The derivation of the formula will be carried out 

in forming a gradient vector and a Hessian matrix where the equation is obtained through the MLE 
method in the previous stage. The gradient vector and the Hessian matrix that are formed will then be 

broken down in such a way so they can be directly applied to the data, only after that the Newton-
Raphson iteration method can be used to find the estimated parameters of the GPR model. 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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 The parameters obtained will be used to model the number of infant mortality cases as the 

dependent variable Y to the independent variable X, namely factors that are thought to affect the 
number of infant mortality cases such as the poverty gap index, the percentage of low birth weight 

babies (LBW), and the percentage of exclusive breastfeeding for infants. The research variables 
consisted of 27 districts/cities in West Java in the 2019-2020 period. 

 

2. Materials and Methods 

2.1. Materials 

This study uses the number of infant mortality cases in West Java for the 2019-2020 period as the 𝑌 

variable, with three independent variables 𝑋, namely the factors that are thought to have an effect such 

as the poverty gap index (𝑋1), the percentage of low birth weight babies (𝑋2), and the percentage of 

exclusive breastfeeding for infants (𝑋3) obtained from the official website of the West Java regional 

government (opendata.jabarprov.go.id) with 54 observations (𝑛). The method used to estimate the 

number of infant mortality parameters based on the GPR model is the MLE method with additional 
Newton-Raphson iteration methods. 

 

2.2 Multicollinearity 
Before modeling the data, it is necessary to first see whether the data has multicollinearity, namely the 
linear relationship between independent variables in a regression model. To detect the presence of 

multicollinearity in the multiple linear regression model, the Variance Inflation Factor (VIF) value 
can be used. The VIF formula can be written as follows [12-14]: 

𝑉𝐼𝐹𝑗 =
1

1−𝑅𝑗
2.  (1) 

Multicollinearity occurs when 𝑉𝐼𝐹 >  10 [15-16]. If multicollinearity occurs, then eliminate the 
variable with a high VIF value. 

 

2.3 Newton-Raphson Iteration 
The reduction of the likelihood function does not always produce an explicit value and is analytically 

difficult to do so numerical methods are used, namely the Newton-Raphson [12]. In general, the 
Newton-Raphson method is taken from a Taylor series of degree two around its parameter estimate 

with the following equation: 

�̂�(𝑟+1) = �̂�(𝑟) − 𝐇−1(�̂�(𝑟))𝐠(�̂�(𝑟)). (2) 

when 𝐠 represents the gradient vector containing the first partial derivative of the likelihood function, 

𝐇 is the Hessian matrix, i.e. the symmetry matrix containing the second partial derivative of the 
likelihood function. 

Newton-Raphson iteration is carried out until a convergent parameter estimate is obtained. The 
steps of the Newton-Raphson iteration are as follows [17]: 

1. Determine the initial estimated value �̂�(0),    

2. Form a gradient vector 𝐠(�̂�(𝑟)) starting from 𝑟 = 0, 

𝐠(�̂�(𝑟))(𝑘+1)×1 =

[
 
 
 
 
 
 
 
 
𝜕 ln 𝐿(𝑦)

𝜕𝛽0(𝑟)

𝜕 ln 𝐿(𝑦)

𝜕𝛽1(𝑟)

𝜕 ln 𝐿(𝑦)

𝜕𝛽2(𝑟)

⋮
𝜕 ln 𝐿(𝑦)

𝜕𝛽𝑘(𝑟) ]
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where 𝑘 is the number of parameters to be estimated and 𝑟 is the iteration, 

3. Form a Hessian matrix 𝐇−1(�̂�(𝑟)) starting from 𝑟 = 0, namely: 

[𝐇(�̂�(𝑟))](𝑘+1)×(𝑘+1)

−1
=

[
 
 
 
 
 
 
𝜕2 ln𝐿(𝑦)

𝜕𝛽0
2

𝜕2 ln 𝐿(𝑦)

𝜕𝛽0 𝜕𝛽1

𝜕2 ln𝐿(𝑦)

𝜕𝛽1 𝜕𝛽0

𝜕2 ln 𝐿(𝑦)

𝜕𝛽1
2

⋯
𝜕2 ln𝐿(𝑦)

𝜕𝛽0 𝜕𝛽𝑘

⋯
𝜕2 ln𝐿(𝑦)

𝜕𝛽1 𝜕𝛽𝑘

⋮ ⋮
𝜕2 ln𝐿(𝑦)

𝜕𝛽𝑘 𝜕𝛽0

𝜕2 ln 𝐿(𝑦)

𝜕𝛽𝑘 𝜕𝛽1

⋱ ⋮

⋯
𝜕2 ln𝐿(𝑦)

𝜕𝛽𝑘
2 ]

 
 
 
 
 
 
−1

  

4. Calculating the value of  �̂�(𝑟+1) through equation (2),  

5. Iterate until you get a convergent value of �̂�. 

The iteration stops when the value of has converged, namely when ‖�̂�(𝑟+1) − �̂�(𝑟)‖ ≤ 𝜀, where 

𝜀 is a tolerance value in the form of a very small positive number (usually taken 𝜀 = 10−5). The 

notation ‖. ‖ denotes the length (norm) of the vector, which is the distance between the two vectors 

being searched for. 

 

2.4 Poisson Regression Model 
Poisson regression uses the Generalized Linear Model (GLM) principle so that it can be used in 

observations, where the GLM model uses a connecting function, namely a regression model that 

connects the mean of the dependent variable 𝑌 with the independent variable 𝑋. In the Poisson 

regression model, the connecting function used is the log function so that the mean of the dependent 

variable will be in the form of an exponential function and also guarantee the value of the variable in 
it is non-negative. The Poisson regression connecting function is as follows [17]: 

𝑙𝑛(𝜆𝑖) = 𝐱i
′𝛃, 

𝜆𝑖 = 𝑒𝑥𝑝(𝐱i
′𝛃) = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘), 

(3) 
(4) 

where 𝐱i
′ is a vector of size (𝑘 × 1) containing the 𝑖-th row of the matrix 𝐗 with the symbol  ′ 

representing the transpose, 𝐗 is a matrix of size (𝑛 × (𝑘 + 1)) containing independent variables, and 

𝛃 is a vector of size ((𝑘 + 1) × 1) which contains the coefficients of the regression parameters. 

The probability function of the Poisson distribution is 

𝑃(𝑦𝑖; 𝛽) =
[𝜆𝑖(𝑥𝑖 ; 𝛽)]𝑦𝑖𝑒−[𝜆𝑖(𝑥𝑖;𝛽)]

𝑦𝑖!
, (5) 

then a Poisson regression model is formed with the log link function as follows:: 

𝑦𝑖 = 𝜆𝑖 + 𝜀𝑖 = 𝑒𝑥𝑝(𝐱i
′𝛃) + 𝜀𝑖

= 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑘𝑥𝑖𝑘) + 𝜀𝑖, 
(6) 

or estimated model 

�̂�𝑖 = �̂�𝑖 = 𝑒𝑥𝑝(𝐱i
′�̂�) = 𝑒𝑥𝑝(�̂�0 + �̂�1𝑥𝑖1 + �̂�2𝑥𝑖2 + ⋯+ �̂�𝑘𝑥𝑖𝑘). (7) 

In the Poisson regression model there is an assumption that must be met, namely equidispersion, 

where the value of the variance of the dependent variable 𝑌 must be equal to its mean value or 

𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖) = 𝐸(𝑦𝑖|𝑥𝑖) = 𝜆𝑖 [18-19]. 
In estimating the Poisson regression parameters, the MLE approach will be used, the parameter 

estimation steps are as follows [20-21]: 
1. Forming the likelihood function of the Poisson distribution as follows: 

𝐿(𝑦; 𝛽) =
{∏ [𝜆𝑖]

𝑦𝑖𝑛
𝑖=1 }𝑒−∑ [𝜆𝑖]

𝑛
𝑖=1

∏ 𝑦𝑖!
𝑛
𝑖=1

.  (8) 

2. Forming the log-likelihood function from equation (8) as follows: 

ℓ𝑝𝑜𝑖 = 𝑙𝑛(𝐿(𝑦; 𝛽)) = ∑ [𝑦𝑖 (𝐱i
′𝛃) − 𝑒𝑥𝑝(𝐱i

′𝛃) − 𝑙𝑛(𝑦𝑖!)].
n
i=1   (9) 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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3. Deriving the log-likelihood function from equation (9) for each parameter and then equating it 

with zero [17]: 
𝜕ℓ𝑝𝑜𝑖

𝜕𝛃
= ∑ [𝑦𝑖𝑥𝑖 − 𝑥𝑖 𝑒𝑥𝑝(𝐱i

′𝛃)]𝑛
𝑖=1 = 0.  (10) 

Because the function obtained using MLE is still implicit, the Newton-Raphson iteration 

method is used to obtain the estimated parameters of the Poisson regression model. The steps are as 
follows: 

1. Determining the initial estimated value �̂�(0). 

�̂�(0) = [0 0 ⋯ 0]−1 

2. Multiplying the matrix 𝐗 by �̂�(𝑟) starting from 𝑟 = 0, we get 

𝐗�̂�(𝑟) = [𝐱1
′ 𝛃(𝑟) 𝐱2

′ 𝛃(𝑟) ⋯ 𝐱n
′ 𝛃(𝑟)]−1 

3. Forming the vector 𝐬 by exponentiating the second step, we get: 

𝐬 = 𝑒𝑥𝑝(𝐗�̂�(𝑟)) = [𝑒𝑥𝑝(𝐱1
′ 𝛃(𝑟)) 𝑒𝑥𝑝(𝐱2

′ 𝛃(𝑟)) ⋯ 𝑒𝑥𝑝(𝐱n
′ 𝛃(𝑟))]

−1
 

4. Forming a gradient vector 𝐠(�̂�(𝑟)), 

To form a gradient vector, first find the value of the first partial derivative of the Poisson regression 
log-likelihood function, then the following equation is obtained: 

𝐠(�̂�(𝑟)) = 𝐗′𝐲 − 𝐗′𝐬, (11) 

 𝐲 is a vector of size (𝑛 × 1) which contains the dependent variable, 

5. Forming an inverse Hessian matrix [𝐇(�̂�(𝑟))]
−1

, 

 To form the Hessian matrix, first find the value of the second partial derivative of the Poisson 
regression log-likelihood function, then obtain the following equation: 

[𝐇(�̂�(𝑟))]
−1

= [−𝐗′𝐂𝐗]−1, (12) 

 where 

𝐂 =

[
 
 
 
 
𝑒𝑥𝑝(𝐱1

′ 𝛃(𝑟)) 0 ⋯ 0

0 𝑒𝑥𝑝(𝐱2
′ 𝛃(𝑟)) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑒𝑥𝑝(𝐱n

′ 𝛃(𝑟))]
 
 
 
 

= 𝑑𝑖𝑎𝑔(𝐬). (13) 

6. Calculate �̂�(𝑟+1) using equation (2), 

7. Iterate until you get a convergent value of �̂�. 

 

2.5 Overdispersion and Underdispersion 
After estimating the parameters of the Poisson regression model, it is then sought whether the model 
meets the equidispersion assumption. To test whether the data has overdispersion or underdispersion, 

it is necessary to look for the dispersion parameters, which are as follows [22-24]: 

𝛿 =
𝐷

𝑛−𝑘−1
,  (14) 

where 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒:𝐷 = 2∑ {𝑦𝑖 𝑙𝑛 (
𝑦𝑖

𝜆𝑖
) − (𝑦𝑖 − 𝜆𝑖)} ,𝑛

𝑖=1   (15) 

and 𝜆𝑖 = 𝑒𝑥𝑝(𝐱i
′𝛃). 

The value of 𝛿 < 0 indicates that the model is underdispersion, i.e. when the value of the 

variance is smaller than its mean value, on the other hand, when 𝛿 > 0 indicates that the model is 

experiencing overdispersion, that is, when the value of the variance is greater than its mean value [12]. 
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2.6 GPR Model 
GPR is an alternative to the data model (count data) which contains both overdispersion and 

underdispersion. This is due to the addition of the dispersion parameter (𝜃) into the model. The 

probability distribution function can be written as [17]: 

𝑓(𝑦) = {

𝜃(𝜃 + 𝑦𝛾)𝑦−1𝑒−𝜃−𝑦𝛾

𝑦!
     ; 𝑦 = 0,1,2,…

0         ; for 𝑦 > 𝑚, when 𝛾 > 0

 , (16) 

where 𝜃 > 0,max [−1, −
𝜃

𝑚
] < 𝛾 ≤ 1, and 𝑚 ≥ 4 is the largest positive integer for which 𝜃 + 𝑚𝛾 > 0 

when 𝛾 is negative. 

In estimating GPR parameters, the MLE approach will be used. Based on the GPR probability 
function in equation (16), the steps for parameter estimation using the MLE method are as follows: 

1. Forming the likelihood function of the GPR distribution as follows: 

𝐿(𝑦; 𝛽, 𝛿) = ∏ (
λi

1+δλi
)
yi

∏
(1+δyi)

yi−1

yi!
n
i=1 exp (−∑

λi(1+δyi)

1+δλi

n
i=1 )n

i=1 .  (17) 

2. Forming the log-likelihood function from equation (17) as follows [9]: 

ℓ𝑔𝑝𝑟 = 𝑙𝑛(𝐿(𝑦; 𝛽, 𝛿)) = ∑ [𝑦𝑖 𝑙𝑛 (
𝜆𝑖

1+𝛿𝜆𝑖
) + (𝑦𝑖 − 1) 𝑙𝑛(1 + 𝛿𝑦𝑖) −𝑛

𝑖=1

𝜆𝑖(1+𝛿𝑦𝑖)

1+𝛿𝜆𝑖
− 𝑙𝑛 (𝑦𝑖!)].  

(18) 

3. Deriving the log-likelihood function from equation (18) for each parameter and then equating it 

with zero [9]: 
𝜕ℓ𝑔𝑝𝑟

𝜕𝛃
= ∑ [

(𝑦𝑖−𝜆𝑖)𝑥𝑖

(1+𝛿𝜆𝑖)2
]𝑛

𝑖=1 = 0,  (19) 

 and 
𝜕ℓ𝑔𝑝𝑟

𝜕𝛿
= ∑ {[

−𝑦𝑖𝜆𝑖

1+𝛿𝜆𝑖
] + [

(𝑦𝑖−1)𝑦𝑖

1+𝛿𝑦𝑖
] − [

(𝑦𝑖−𝜆𝑖)𝜆𝑖 

(1+𝛿𝜆𝑖)2
]}𝑛

𝑖=1  = 0.  (20) 

Because the function obtained using MLE is still implicit, the Newton-Raphson iteration 

method is used to obtain the estimated parameters of the GPR model. The steps are as follows: 

1. Determining the initial estimated value �̂�(0). 

�̂�(0) = [0 0 ⋯ 0]−1 

2. Multiplying the matrix 𝐗 by �̂�(𝑟) starting from 𝑟 = 0, we get 

𝐗�̂�(𝑟) = [𝐱1
′ 𝛃(𝑟) 𝐱2

′ 𝛃(𝑟) ⋯ 𝐱n
′ 𝛃(𝑟)]−1 

3. Forming the vector 𝐬 by exponentiating the second step, we get: 

𝐬 = 𝑒𝑥𝑝(𝐗�̂�(𝑟)) = [𝑒𝑥𝑝(𝐱1
′ 𝛃(𝑟)) 𝑒𝑥𝑝(𝐱2

′ 𝛃(𝑟)) ⋯ 𝑒𝑥𝑝(𝐱n
′ 𝛃(𝑟))]

−1
 

4. Forming a gradient vector 𝐠(�̂�(𝑟)), 

 To form a gradient vector, first find the value of the first partial derivative of the GPR log-

likelihood function, then the following equation is obtained: 

𝐠(�̂�(𝑟)) = 𝐗′𝐕𝟐𝐲 − 𝐗′(𝐕𝟐𝐬), (21) 

 where 

𝐕 = [𝐈 + 𝛿𝐂], (22) 
and 𝐈 is an Identity matrix. 

5. Forming an inverse Hessian matrix [𝐇(�̂�(𝑟))]
−1

, 

 To form the Hessian matrix, first find the value of the second partial derivative of the GPR log-

likelihood function, then obtain the following equation: 

[𝐇(�̂�(𝑟))]
−1

= [(𝐗′𝐂)(𝐕𝟑𝐀)𝐗]
−1

, (23 ) 

 where 

𝐀 = 𝛿𝐂 − 2𝛿𝐃 − 𝐈, (24 ) 
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 and 

𝐃 = [

𝑦1 0 ⋯ 0
0 𝑦2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑦𝑛

] = 𝑑𝑖𝑎𝑔(𝐲), (25 ) 

6. Calculate �̂�(𝑟+1) using equation (2), 

7. Iterate until you get a convergent value of �̂�. 

 

2.7 Simultaneous Test and Partial Test 
Simultaneous significance testing for parameter estimation of the GPR model uses the likelihood ratio 

test with the following hypothesis: 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 (there is no independent variable that has an effect of 𝑌 variable) 

𝐻1: at least one 𝛽𝑘 ≠ 0 (there is at least one independent variable that has an effect of 𝑌 variable) 

The statistics used are G test statistics, which are as follows [12]: 

𝐺 = −2 𝑙𝑛 (
ℎ0

ℎ1
) = 2[𝑙𝑛(ℎ1) − 𝑙𝑛(ℎ0),  (26) 

where ℎ1 is the log-likelihood value of the model containing all independent variables and ℎ0 is the 

log-likelihood value of the model without independent variables. 

For GPR, we get 

𝐺𝑔𝑝𝑟 = 2 ∑ [𝑦𝑖 𝑙𝑛 (
𝑒𝑥𝑝(𝐱i

′𝛃)

1+𝛿 𝑒𝑥𝑝(𝐱i
′𝛃)

) −
𝑒𝑥𝑝(𝐱i

′𝛃)(1+𝛿𝑦𝑖)

1+𝛿 𝑒𝑥𝑝(𝐱i
′𝛃)

] −n
i=1

[𝑦𝑖 𝑙𝑛 (
𝑒𝑥𝑝(𝛽0)

1+𝛿 𝑒𝑥𝑝(𝛽0)
) −

𝑒𝑥𝑝(𝛽0)(1+𝛿𝑦𝑖)

1+𝛿 𝑒𝑥𝑝(𝛽0)
].  

(27) 

The decision-making criteria is to reject 𝐻0 if the value of 𝐺𝑔𝑝𝑟 > 𝜒(𝛼,𝑑𝑏)
2  where 𝜒(𝛼,𝑑𝑏)

2  is the 

value of the Chi-Square table at the level of accuracy 𝛼 with 𝑑𝑏 = 𝑛 − 𝑘 − 1. 

Partial testing using the Wald test [12], the hypothesis used is as follows: 

𝐻0: 𝛽𝑗 = 0 (the 𝑗-th independent variable has no effect on the dependent variable) 

𝐻1: 𝛽𝑗 ≠ 0 (the 𝑗-th independent variable has effect on the dependent variable) 

The test statistics used are as follows [13-15]: 

𝑊𝑗 =
�̂�𝑗

2

𝑉𝑎𝑟(�̂�𝑗)
 ~ 𝜒(1)

2 ,  (28) 

with 

𝑉𝑎𝑟(�̂�𝑗) = |
𝜕2 𝑙𝑛(𝐿(𝑦;𝛽,𝛿))

𝜕�̂�𝑗
2 |

−1

,  (29) 

where 

�̂�j : 𝑗-th parameter estimate 

The test criteria is to reject 𝐻0 if 𝑊𝑗 > 𝜒(𝛼,1)
2  where 𝜒(𝛼,1)

2  is the value of Chi-Square table at the 

level of accuracy 𝛼 with degrees of freedom 1. Or reject 𝐻0 jika 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 𝛼. 

 

3. Results and Discussion 

3.1 Multicollinearity Test Results 
Before looking for the Poisson parameter estimation, first look for whether there is multicollinearity 

in the data or there is a relationship between the independent variables. Multicollinearity detection 

using the R Studio program produced value of each variable, namely, 𝑋1  =  1,30; 𝑋2 = 1,63; and 

𝑋3 = 1,33. All of these values are less than 10, so it can be concluded that there is no multicollinearity 

in the data. Because there is no multicollinearity in the data, the data can be used to model the number 

of infant mortality cases in West Java. 
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3.2 Parameter Estimation Results of Poisson Regression Model 
Calculations to get the estimated value of the Poisson regression model parameters are carried out 

using the Newton-Raphson iteration method with a tolerance value of 10−5. The iteration results are 
as follows: 

1st iteration (𝑟=0) 

1. Determining the initial estimated value �̂�(0), the initial estimated value is taken to be 0 so that we 

get �̂�0(0)
= �̂�1(0)

= �̂�2(0)
= �̂�3(0)

= 0 

2. Multiplying the matrix 𝐗 by �̂�(0) then change into exponential form, we get 

𝐬 =

[
 
 
 
 
1
1
1
⋮
1]
 
 
 
 

 

3. Forming a gradient vector 𝐠(�̂�(0)) using equation (11), we get 

𝐠(�̂�(0)) = [

1,15
2,53
4,57
30,18

] 

4. Forming an inverse Hessian matrix [𝐇(�̂�(0))]
−1

 using equation (12), we get 

[𝐇(�̂�(0))]
−1

= [

−0,63 0,13 −0,00 0,01
0,14 −0,20 0,03 0,00

−0,00 0,03 −0,03 0,00
0,01 0,00 0,00 −0,00

] 

5. Calculate �̂�(1) using equation (2), we get 

�̂�(1) = [

0,19
0,23
0,04

−0,01

] 

We get ‖�̂�(𝟏) − �̂�(𝟎)‖ = 𝟎, 𝟑𝟎; where the value is still greater than 𝟏𝟎−𝟓, so the calculation 

continues to the next iteration. 
The iteration is continued until a convergent value of is obtained. The estimation of the Poisson 

regression model parameters using R Studio software obtained a convergent value in the 4th iteration 

with the results, �̂�0 = 0,22; �̂�1 = 0,22; �̂�2 = 0,03; and �̂�3 = −0,01; with ‖�̂�(4) − �̂�(3)‖ = 6,97 ×

10−7 < 𝜀 = 10−5, so that the Poisson regression model (�̂�) is as follows: 

�̂� = 𝑒𝑥𝑝(0,22 + 0,22𝑥1 + 0,03𝑥2 − 0,01𝑥3). (30 ) 

After obtaining the Poisson regression model in equation (30), then look for whether the model 

meets the assumption of equidispersion or not. The test was carried out by finding the dispersion 

parameter (𝛿) using R Studio software and we get the value of the dispersion parameter of the Poisson 

regression model is 𝛿 = 35.26 > 0, so the model is declared to have overdispersion. Because the model 

violates the equidispersion assumption, it is necessary to use GPR to model the data. 

 

3.3 Parameter Estimation Results of GPR Model 
Calculations to get the estimated value of the GPR model parameters are carried out using the 

Newton-Raphson iteration method with a tolerance value of 10−5. The iteration results are as follows: 

1st iteration (𝑟=0) 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta


267 
 

 

  Factors Affecting the Number of Infant Morality Cases in West Java for the 2019-2020  

Period using Generalized Poisson Regression (GPR) 

ISSN : 1411 3724 Eksakta : Berkala Ilmiah Bidang MIPA 

1. Determining the initial estimated value �̂�(0), the initial estimated value is taken to be 0 so that we 

get �̂�0(0)
= �̂�1(0)

= �̂�2(0)
= �̂�3(0)

= 0 

2. Multiplying the matrix 𝐗 by �̂�(0) then change into exponential form, we get 

𝐬 =

[
 
 
 
 
1
1
1
⋮
1]
 
 
 
 

 

3. Forming a gradient vector 𝐠(�̂�(0)) using equation (21), we get 

𝐠(�̂�(0)) = [

1,15
2,53
4,57
30,18

] 

4. Forming an inverse Hessian matrix [𝐇(�̂�(0))]
−1

 using equation (23), we get 

[𝐇(�̂�(0))]
−1

= [

−0,63 0,13 −0,00 0,01
0,14 −0,20 0,03 0,00

−0,00 0,03 −0,03 0,00
0,01 0,00 0,00 −0,00

] 

5. Calculate �̂�(1) using equation (2), we get 

�̂�(1) = [

0,19
0,23
0,04

−0,01

] 

We get ‖�̂�(𝟏) − �̂�(𝟎)‖ = 𝟎, 𝟑𝟎; where the value is still greater than 𝟏𝟎−𝟓, so the calculation 

continues to the next iteration. 
The iteration is continued until a convergent value of is obtained. The estimation of the GPR 

model parameters using R Studio software obtained a convergent value in the 3rd iteration with the 

results, �̂�0 = 0,20; �̂�1 = 0,23; �̂�2 = 0,04; and �̂�3 = −0,01; with ‖�̂�(4) − �̂�(3)‖ = 3,27 × 10−6 <

𝜀 = 10−5, so that The GPR provisional model formed is as follows:  

�̂� = 𝑒𝑥𝑝(0,20 + 0,23𝑥1 + 0,04𝑥2 − 0,01𝑥3). (31 ) 

The next step is to test the significance of the parameters simultaneously using the Likelihood 
Ratio Test and partially using the Wald Test to find out which factors affect the number of infant 

mortality cases in West Java. 

 

3.4 Simultaneous Test Results of GPR Model 
Based on the GPR model obtained through equation (31), the test statistic value obtained is 

𝐺𝑔𝑝𝑟 = 22033,22. The value of the Chi-Square table with an accuracy level of 𝛼 = 0,05 and degrees 

of freedom 50 is 67,50; so the value of 𝐺𝑔𝑝𝑟 > 𝜒(0,05;50)
2 . Therefore, 𝐻0 is rejected, which means that 

there is at least one significant parameter/at least one independent variable that contributes to the 

number of infant mortality cases in West Java, or in other words the data can be modeled with GPR. 

 

3.5 Partial Test Results of GPR Model  
The calculation is based on the model that has been obtained in equation (31) using the Wald 

test value in equation (28) and the value of 𝑉𝑎𝑟(�̂�𝑗) is calculated through equation (29). The value 

obtained is then compared with the value of the Chi-Square table at an accuracy level of 𝛼 = 0,05 and 

a degree of freedom 1, which is 3,84. The results of the Wald test for each parameter are as follows: 
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1. Poverty gap index factor (𝑋1) 

The test statistic value 𝑊1 = 25,54 > 3,84; so 𝐻0 is rejected, meaning that the influence of the 

poverty gap index contributes significantly to the number of infant mortality cases in West Java. 

2. Factors for low birth weight babies (𝑋2) 

The statistical value of the test 𝑊2 = 4,89 > 3,84; so 𝐻0 was rejected, meaning that the effect of 

low birth weight babies contributed significantly to the number of infant mortality cases in West 

Java. 

3. Factors of exclusive breastfeeding in infants (𝑋3) 

The statistical value of the test 𝑊3 = 40,63 > 3,84; so 𝐻0 was rejected, meaning that the effect of 

exclusive breastfeeding on infants contributed significantly to the number of infant mortality cases 

in West Java. 

 

3.6 The Final Model of GPR on the Number of Infant Mortality Cases in West Java for the 2019-

2020 Period 
Based on the results of the simultaneous test and partial test, it is found that all independent 

variables contribute to changes in the dependent variable, so that the final GPR model can be made 

as follows: 

�̂� = 𝑒𝑥𝑝(0,20 + 0,23𝑥1 + 0,04𝑥2 − 0,01𝑥3). (32 ) 

The model in equation (32) can be interpreted as follows: 

1. If the poverty gap index (𝑋1) increases by one unit, the number of infant mortality cases will 

increase by 𝑒𝑥𝑝(0,23) or 1,26 times. 

2. If low birth weight babies (𝑋2) increase by one unit, then the number of infant mortality cases will 

increase by 𝑒𝑥𝑝(0,04) or 1,04 times. 

3. If exclusive breastfeeding for infants (𝑋3) increases by one unit, then the number of infant 

mortality cases will decrease by 𝑒𝑥𝑝(−0,01) or 0,99 times. 

After analyzing the data on the number of infant mortality cases in West Java for the 2019-2020 
period, the results showed that infant mortality cases were influenced by the number of infant 

mortality cases such as the poverty gap index, the percentage of low birth weight babies (LBW), and 
the percentage of exclusive breastfeeding for infants. In further research, other models can be sought 

that can overcome similar cases and there are other problems such as outliers in the data, for example 
the Poisson's robust hurdle regression model [25-27]. 

 

4. Conclusion 
The Poisson regression model of the data on the number of infant mortality cases in West Java in the 

2019-2020 period violates the equidispersion assumption because the dispersion parameter value 𝛿 >
0, then the GPR model is used to model the data. Estimation of GPR model parameters using the 

MLE method and continued with Newton-Raphson iteration. The resulting parameters were then 

tested simultaneously using the Likelihood Ratio Test (LRT) and partially using the Wald Test to see 
the significance of the parameters that contributed to the dependent variable. Factors that influence the 

number of infant mortality cases in West Java for the 2019-2020 period are the poverty gap index, the percentage 

of low birth weight infants (LBW), and the percentage of exclusive breastfeeding for infants. 
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