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Abstract. The wave equation on a string is an example of a partial 

differential equation problem. There are several methods for finding the 
solution to the wave equation on a string. The solution method will 

differ depending on the definition of the function's domain. This study 

aims to determine the form of solving the wave equation on the strings 
and the results of the analysis of the wave motion that depends on the 

number of boundary conditions, using a particular solution method, 

namely the Fourier transform method. The boundary conditions used 

are the Dirichlet boundary conditions. The Fourier transform method 
is used to obtain the solution of the wave equation on the string. The 

Fourier transform will transform the wave equation on the string and 

get the solution form of the wave equation on the string by applying the 
inverse Fourier transform. The results of this study obtained the same 

form of solution for each state from the wave equation on strings, 

namely in the form of the D'Alembert solution for the wave equation. 

As well, the movement of the wave will form a periodic solution by 

period 2π, with a different form of deviation occurring at each point x 

for each value t. 
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1. Introduction 
Differential equations are pivotal in the mathematical sciences, often employed to solve complex 
physical problems. By transforming physical phenomena and everyday occurrences into a 

mathematical framework, differential equations offer a systematic approach to understanding the 
world around us [1]. These equations are categorized into two main types: ordinary differential 
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equations, which address simpler physical problems, and partial differential equations, capable of 

modeling more intricate and dynamic scenarios [2-5]. Among the myriad of physical phenomena that 
can be modeled through partial differential equations, the wave equation stands out, particularly in 

the context of string vibrations. 
The wave equation, a quintessential example of a partial differential equation, plays a crucial role 

in understanding wave dynamics on strings. An essential aspect of tackling the wave equation is 
considering the initial and boundary conditions, as these elements significantly influence the choice 

of the solution method [3-5]. Various techniques have been developed for solving wave equations on 
strings, each suited to specific boundary conditions. The Laplace Transform method, for instance, is 

ideal for semi-infinite domains [6-8], while the method of separation of variables is tailored for finite 
domains, and D'Alembert's formulation is applicable to infinite domains [9-10]. 

In recent years, the Fourier Transform has emerged as a particularly versatile and effective 
method for solving partial differential equations, especially those with infinite domains. Moreover, 

the Fourier sine and cosine Transform methods extend this versatility to functions defined in finite 
and semi-infinite domains, respectively [11-13]. These methods are not only mathematically elegant 

but also lend themselves to computational efficiency, making them highly relevant in the era of high-
performance computing. 

The current study aims to explore the application of the Fourier Transform in solving the wave 
equation on strings. We focus on how different boundary conditions influence the wave dynamics and 

the efficacy of the Fourier Transform in capturing these nuances. This approach is not only significant 
in theoretical physics but also holds immense potential in practical applications, ranging from 
acoustics to materials science, where understanding wave behavior is fundamental. Recent 

advancements in computational techniques and the increasing availability of data have further 
accentuated the relevance of this method in contemporary research [14-19]. 

 

2. Literatur Review 
The literature review section aims to provide a comprehensive overview of the foundational concepts 

and recent developments relevant to the study. This includes an in-depth analysis of the wave equation 
on strings, the crucial role of initial and boundary conditions, and the application of Fourier Transform 

methods in solving these equations. 
 

2.1 Wave Equation on a String 
The wave equation on strings is a classic example of a partial differential equation used to describe 
wave motion. It is essential in fields such as acoustics, material science, and physics. This equation 

models how disturbances on a string propagate over time, giving insights into the fundamental nature 
of wave dynamics. Recent studies have expanded on the traditional understanding of the wave 

equation, exploring nonlinear effects and complex boundary conditions that more accurately reflect 
real-world scenarios [20-24].  

The wave equation on a string is the object study, whereas a piece of elastic string whose length with 𝐿 

on both ends is tied to the axis 𝑥 in 𝑥 = 0 and 𝑥 = 𝐿. Then the string is pulled and red at a certain 

speed. If the strings are partitioned along the way ∆𝑥, it will look like the following image. 
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Figure 1. Partitions on a string 

 
Referring to figure 1, then the general form of the wave equation on the string is obtained, 

𝝏𝟐𝒖

𝝏𝒕𝟐
= 𝒄𝟐  

𝝏𝟐𝒖

𝝏𝒙𝟐
, (𝟏) 

with, and 𝒄 = √
𝑻

𝝆
. Where 𝒖 expresses the deviation of a wave, 𝒙 is the point of occurrence of the 

variation, 𝒕 represents time, 𝒄 is a physical constant wwithnsions of velocity, 𝑻 describes voltage, and 

𝝆 expresses the mass of strings. 

 

2.2 Initial Conditions 
Initial conditions in the context of the wave equation describe the state of the system at a specific initial 

time, usually denoted as  𝑡 = 0. These conditions are essential for determining the starting point of the 

wave motion on a string. Typically, initial conditions are given in terms of the initial displacement 
and initial velocity of points on the string. Mathematically, these are expressed as: 

2.2.1 Initial Displacement Condition: It specifies the shape of the string at 𝑡 = 0, often denoted as 

𝑢(𝑥, 0) = 𝑓(𝑥), where 𝑢(𝑥, 𝑡)is the displacement of the string at position x and time t, and f(x) 

is a predefined function. 
2.2.2 Initial Velocity Condition: This defines the velocity of each point on the string at the initial time, 

expressed as 
∂𝑡

∂𝑢
(𝑥, 0) =  𝑔(𝑥), where g(x) is a function specifying the initial velocity distribution 

along the string. 

The initial conditions determine the physical state at the time 𝑡0. The wave equation on the string is a second-

order partial differential equation, so there will be two boundary conditions, namely: 

𝑢(𝑥, 0) = 𝑓1(𝑥) dan 
𝜕

𝜕𝑡
𝑢(𝑥, 0) = 𝑓2(𝑥) (2) 

 

2.3 Boundary Condition 
Boundary conditions, on the other hand, specify the behavior of the string at its endpoints, which are 

crucial in determining how the wave is confined or reflected. There are generally three types of 
boundary conditions:  

2.3.1 Fixed (Dirichlet) Boundary Conditions: These occur when the ends of the string are held fixed, 
implying that the displacement at these points remains zero throughout the motion. 

Mathematically, it is represented as u (0,t)=u (L,t)=0, where L is the length of the string. 

𝑥 

𝑢 

𝑥 𝑥 + ∆𝑥  

𝑇1 

𝑇2 

𝛼 

𝛽 

𝑇1 cos 𝛼 

𝑇1 sin 𝛼 

𝑇2 𝑐𝑜𝑠 𝛽 

𝑇2 sin 𝛽 
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2.3.2 Free (Neumann) Boundary Conditions: In this scenario, the endpoints of the string are free to 

move vertically, implying that the derivative of the displacement with respect to position is zero 

at the endpoints. This is expressed as 
∂𝑥

∂𝑢
(0, 𝑡) =

∂𝑥

∂𝑢
  (𝐿, 𝑡) = 0. 

2.3.3 Periodic Boundary Conditions: These conditions are used when the string forms a closed loop, 

implying that the behavior of the string is the same at both endpoints. This is represented by 

𝑢(0, 𝑡) = = 𝑢(𝐿, 𝑡) and often 
∂𝑥

∂𝑢
(0, 𝑡) =

∂𝑥

∂𝑢
  (𝐿, 𝑡) = 0.  

In this study, the Dirichlet boundary condition was used where the value of a function remains at its boundary 
[6]. Three circumstances are based on the sum of the boundary conditions, namely: 

1. For strings with a finite length, there are two boundary conditions  

𝑢(0, 𝑡) = 0 dan 𝑢(𝐿, 0) = 0, (3) 

2. For strings with semi-infinite length, there is one boundary condition 

𝑢(0, 𝑡) = 0 , (4) 

3. Strings of infinite length have no boundary conditions 
 

2.4 Fourier Transform Methods  
The Fourier Transform is a powerful tool for analyzing and solving differential equations, particularly 
in the context of wave phenomena. Its ability to decompose complex waveforms into simpler 

sinusoidal components makes it highly effective for analyzing the wave equation on strings. Recent 
advancements in this area have led to more efficient algorithms and novel applications in 

computational physics and engineering, further underscoring the relevance of the Fourier Transform 
in modern scientific research [25-28]. 

3. Method To Finding Solution 
This study employs a comprehensive literature review as its primary methodological approach. The 
focus is on gathering and scrutinizing a wide array of scholarly materials related to the Fourier 
Transform and its specific application, the Fourier Sinus Transform, in solving partial differential 

equations for wave equations on strings. This involves a meticulous examination of academic journals, 
books, conference proceedings, and recent publications in the field of mathematical physics, 

computational mathematics, and engineering. The method used is a literature study by finding and 
reviewing material regarding the Fourier Transform and the Fourier Sinus Transform methods. 

 

3.1 Fourier's Transform 
The Fourier Transform is a powerful mathematical tool that transforms a function of time (or space) 
into a function of frequency. In the context of wave equations, the Fourier Transform is used to 

decompose complex waveforms into their constituent frequencies. This decomposition facilitates the 
analysis and solution of differential equations by converting them from the time (or space) domain 

into the frequency domain, where they are often simpler to solve. 
Recent research in this area has yielded significant advancements in the application of the Fourier 

Transform to partial differential equations. Innovative algorithms and computational methods have 
been developed to enhance the efficiency and accuracy of this approach, especially in dealing with 

complex boundary conditions and non-linear wave phenomena [29-31]. The Fourier Transform is 

applied to solve partial differential equations with intervals (−∞, ∞). The Fourier Transform of 𝒖(𝒙, 𝒕) that 

�̅�(𝝎, 𝒕) is defined as follows [32]. 

�̅�(𝝎, 𝒕) =
𝟏

√𝟐𝝅
∫ 𝒖(𝒙, 𝒕)

∞

−∞

𝒆−𝒊𝝎𝒙𝒅𝒙, (𝟓) 

and the inverse of the Fourier Transform is 
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𝒖(𝒙, 𝒕) =
𝟏

√𝟐𝝅
∫ �̅�(𝝎, 𝒕)

∞

−∞

𝒆𝒊𝝎𝒙𝒅𝝎. (𝟔) 

 

3.2 Fourier Sinus Transform 
The Fourier Sinus Transform, a variant of the Fourier Transform, is particularly suited for problems 
with specific boundary conditions, such as those encountered in wave equations on strings. This 
method is applied when the function to be transformed is odd, and thus, the transform predominantly 

uses sine functions. It is especially effective in handling problems with fixed or Dirichlet boundary 
conditions, where the displacement of the string is zero at the boundaries. 

The latest research in the Fourier Sinus Transform has explored its broader applications, 
including its role in numerical methods for solving partial differential equations. Studies have also 

investigated its efficiency in computational simulations, offering new insights into wave dynamics and 
enhancing the ability to model real-world physical systems more accurately [33-36]. Fourier sine 

Transforms are commonly used for physical problems with semi-infinite domains or at intervals 
(𝟎, ∞). 

Fourier sine Transform of 𝑢(𝑥, 𝑡) that �̅�𝑠(𝜔, 𝑡) is defined as follows [37]. 

�̅�𝑠(𝜔, 𝑡) = √
2

𝜋
∫ 𝑢(𝑥, 𝑡) sin 𝜔𝑥 𝑑𝑥

∞

0

, (7) 

and the inverse of the Fourier sinus Transform is 

𝒖(𝒙, 𝒕) = √
𝟐

𝝅
∫ �̅�𝒔(𝝎, 𝒕) 𝐬𝐢𝐧 𝝎𝒙 𝒅𝝎

∞

𝟎

, (𝟖) 

When the domain of finite physical problems or at intervals (0, 𝐿) used finite Sine Fourier Transforms. 

Finite Sine Fourier Transforms of 𝑢(𝑥, 𝑡) that �̅�𝑠(𝑛, 𝑡) is the one defined as follows [37]. 

�̅�𝑠(𝑛, 𝑡) = ∫ 𝑢(𝑥, 𝑡) sin (
𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0

, (9) 

and the inverse of the finite Sine Fourier Transforms is 

𝑢(𝑥, 𝑡) =
2

𝐿
∑ �̅�𝑠(𝑛, 𝑡) sin (

𝑛𝜋𝑥

𝐿
) ,

∞

𝑛=1

(10) 

 

4. Results and Discussion 
This section presents the findings of the study, focusing on the application of the Fourier Transform 

method to solve the wave equation on a string under varying boundary conditions. It also includes 
visualizations to interpret the wave movements, providing a comprehensive understanding of the 
dynamics involved. The results of this study will show the solving of the wave equation on the string with 

three states of the number of boundary conditions solved using the Fourier Transform method, as well as 
visualization of the movement of the waves. 

 

4.1 Solving the Wave Equation on a String with Finite Length 
The application of the Fourier Transform to a string of finite length reveals distinct wave patterns [38-
39]. This part of the study demonstrates how fixed boundary conditions at both ends of the string 

influence the wave behavior, resulting in standing wave patterns. The results highlight the formation 
of nodes and antinodes and their relation to the string's length and tension. Strings of finite length are 

strings that have a distance from 𝑥 = 0 up to 𝑥 = 𝐿. The deviations at both ends of the string are zero, 

so there are two boundary conditions as in equation (3). 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
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Figure 2. Strings of finite length 
 

This problem can be solved using the finite Sine Fourier Transforms (9) and (10). Transform both 
segments of the wave equation (1), obtained 

𝐹𝑠 (
𝜕2

𝜕𝑡2 𝑢(𝑥, 𝑡)) = 𝑐2𝐹𝑠 (
𝜕2

𝜕𝑥2 𝑢(𝑥, 𝑡)), 

𝜕2

𝜕𝑡2 �̅�𝑠(𝑛, 𝑡) = −
𝑐2𝑛2𝜋2

𝐿2  �̅�𝑠(𝑛, 𝑡), 

            
𝜕2

𝜕𝑡2 �̅�𝑠(𝑛, 𝑡) +
𝑐2𝑛2𝜋2

𝐿2  �̅�𝑠(𝑛, 𝑡) = 0, (11) 

thus obtained an ODE second-order (11), then a solution to the equation (11) is sought 

�̅�𝑠(𝑛, 𝑡) = 𝑐1(𝑛) cos (
𝑐𝑛𝜋

𝐿
𝑡) + 𝑐2(𝑛) sin (

𝑐𝑛𝜋

𝐿
𝑡) . (12) 

Transform the initial conditions 𝑓1(𝑥) and 𝑓2(𝑥) obtained 

�̅�𝑠(𝑛, 0) = 𝐹1𝑠(𝑛) = ∫ 𝑓1(𝑥)
𝐿

0

sin
𝑛𝜋𝑥

𝐿
𝑑𝑥, 

𝜕

𝜕𝑡
�̅�𝑠(𝑛, 0) = 𝐹2𝑠(𝑛) = ∫ 𝑓2(𝑥)

𝐿

0

sin
𝑛𝜋𝑥

𝐿
𝑑𝑥, 

then by using the initial condition transformation obtained 

𝑐1(𝑛) = 𝐹1𝑠(𝑛) = ∫ 𝑓1(𝑥)
𝐿

0

sin
𝑛𝜋𝑥

𝐿
𝑑𝑥, 

𝑐2(𝑛) =
𝐿

𝑐𝑛𝜋
𝐹2𝑠(𝑛) =

𝐿

𝑐𝑛𝜋
 ∫ 𝑓2(𝑥)

𝐿

0

sin
𝑛𝜋𝑥

𝐿
𝑑𝑥, 

do the substitution 𝑐1(𝑛) and 𝑐2(𝑛) to the equation (12), gets 

�̅�𝑠(𝑛, 𝑡) = 𝐹1𝑠(𝑛) cos (
𝑐𝑛𝜋

𝐿
𝑡) +

𝐿

𝑐𝑛𝜋
 𝐹2𝑠(𝑛) sin (

𝑐𝑛𝜋

𝐿
𝑡) , (13) 

Apply inverse of the finite Sine Fourier Transforms to (13) to obtain a particular solution 

𝑢(𝑥, 𝑡) =
2

𝐿
∑ [𝐹1𝑠(𝑛) cos (

𝑐𝑛𝜋

𝐿
𝑡) +

𝐿

𝑐𝑛𝜋
 𝐹2𝑠(𝑛) sin (

𝑐𝑛𝜋

𝐿
𝑡)]

∞

𝑛=1

sin
𝑛𝜋𝑥

𝐿
. (14) 

Now since, 2 cos 𝛼 sin 𝛽 = sin(𝛼 + 𝛽) − sin(𝛼 − 𝛽) gets 

2

𝐿
∑ 𝐹1𝑠(𝑛) cos (

𝑐𝑛𝜋

𝐿
𝑡) sin (

𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

, 

=
1

2
 [

2

𝐿
∑ 𝐹1𝑠(𝑛)

∞

𝑛=1

sin
𝑛𝜋

𝐿
(𝑥 + 𝑐𝑡) +

2

𝐿
∑ 𝐹1𝑠(𝑛)

∞

𝑛=1

sin
𝑛𝜋

𝐿
(𝑥 − 𝑐𝑡)], 

=
1

2
 [𝑓1(𝑥 + 𝑐𝑡) + 𝑓1(𝑥 − 𝑐𝑡)]. 

And by applying sin 𝑥 =
𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
 and cos 𝑥 =

𝑒𝑖𝑥+𝑒−𝑖𝑥

2
, gets 

𝑥 = 0 𝑥

= 𝐿 

𝑢(𝑥, 𝑡) 
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2

𝐿
∑

𝐿

𝑐𝑛𝜋
 𝐹2𝑠(𝑛) sin (

𝑐𝑛𝜋

𝐿
𝑡) sin (

𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

 

=
2

𝐿
∑

𝐿

𝑐𝑛𝜋
 𝐹2𝑠(𝑛) (

𝑒
𝑖𝑛𝜋

𝐿 𝑐𝑡 − 𝑒−
𝑖𝑛𝜋

𝐿 𝑐𝑡

2𝑖
) (

𝑒
𝑖𝑛𝜋

𝐿 𝑥 − 𝑒−
𝑖𝑛𝜋

𝐿 𝑥

2𝑖
)

∞

𝑛=1

 

=
1

𝑐
 
2

𝐿
∑

𝐿

𝑛𝜋
 𝐹2𝑠(𝑛) [−

1

2
(

𝑒
𝑖𝑛𝜋

𝐿
(𝑥+𝑐𝑡) + 𝑒−

𝑖𝑛𝜋
𝐿

(𝑥+𝑐𝑡)

2
) +

1

2
(

𝑒
𝑖𝑛𝜋

𝐿
(𝑥−𝑐𝑡) + 𝑒−

𝑖𝑛𝜋
𝐿

(𝑥−𝑐𝑡)

2
)]

∞

𝑛=1

 

=
1

2𝑐
 
2

𝐿
∑ 𝐹2𝑠(𝑛) [

− cos
𝑛𝜋
𝐿

(𝑥 + 𝑐𝑡) + cos
𝑛𝜋
𝐿

(𝑥 − 𝑐𝑡)

𝑛𝜋
𝐿

]

∞

𝑛=1

 

=
1

2𝑐
 
2

𝐿
∑  𝐹2𝑠(𝑛) [∫ sin (

𝑛𝜋

𝐿
𝑟)

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑑𝑟]

∞

𝑛=1

, 

=
1

2𝑐
 ∫

2

𝐿
∑  𝐹2𝑠(𝑛)

∞

𝑛=1

sin (
𝑛𝜋

𝐿
𝑟)

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑑𝑟, 

=
1

2𝑐
∫ 𝑓2(𝑟)

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑑𝑟. 

Then by applying the trigonometric formula and the Euler formula on (14), a settlement is obtained 
in the form of the D'Alembert formula, 

𝑢(𝑥, 𝑡) =
1

2
 [𝑓1(𝑥 + 𝑐𝑡) + 𝑓1(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫ 𝑓2(𝑟)

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑑𝑟. (15) 

 

4.2 Solving the Wave Equation on a String with Semi-Infinite Length 
In this subsection, the analysis extends to a string with one fixed end and another extending infinitely. 
The Fourier Transform method reveals how waves propagate in such a medium, with a focus on the 

damping and reflection phenomena at the fixed boundary. This case study is particularly relevant for 
understanding wave propagation in semi-bounded media [40-41]. Strings with semi-infinite lengths 

are strings with a distance from 𝑥 = 0 up to 𝑥 = ∞. The deviation at 𝑥 = 0 zero, so there is one 

boundary condition as in equation (4). 
 

Figure 3. Strings of semi-infinite length 
 

This problem can be solved using the Sine Fourier Transforms (7) and (8). The completion step is 
similar to the completion step for a finite string length, and the difference lies only in the form of the 

method used. Thus obtain a particular form of settlement. 

𝑢(𝑥, 𝑡) = √
2

𝜋
 ∫ [𝐹1𝑠(𝜔) cos 𝜔𝑐𝑡 +

𝐹2𝑠(𝜔)

𝜔𝑐
sin 𝜔𝑐𝑡] sin 𝜔𝑥

∞

0

𝑑𝜔, (16) 

applying trigonometric formulas and Euler's formulas obtained a solution in the form of d'Alembert's 

procedure similar to equation (15). 

𝑥 = 0 

𝑢(𝑥, 𝑡) 
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4.3 Solving the Wave Equation on a String with Infinite Length 
Here, the infinite length of the string offers a unique scenario where the waves are not bound by any 

physical constraints. The study explores how wave packets propagate and disperse over time and 
space, using the Fourier Transform to analyze the wave behavior in an unbounded domain [42-44]. 

Strings of infinite length are strings with a distance of 𝑥 = −∞ up to 𝑥 = ∞. Strings with this condition 

have no boundary conditions. 

 

Figure 4. Strings of infinite length 
 

This problem can be solved using Fourier Transforms (5) and (6). The completion step is similar to 
the completion step for a finite string length, and the difference lies only in the form of the method 

used. Therefore, get a particular form of completion. 

𝑢(𝑥, 𝑡) =
1

√2𝜋
∫ [𝐹1(𝜔) cos 𝜔𝑐𝑡 +

𝐹2(𝜔)

𝜔𝑐
sin 𝜔𝑐𝑡] 

∞

−∞

𝑒𝑖𝜔𝑥𝑑𝜔, (17) 

applying Euler's formula obtained a solution in the form of a D'Alembert formula similar to equation 
(15). 

 

4.4 Visualization and Interpretation of Wave Movements with Finite String Lengths 
Visualizations of wave movements on a finite string are provided, illustrating the formation of standing 
waves, nodes, and antinodes [45]. These visualizations aid in understanding the harmonic patterns 

formed and how they are influenced by the string's physical properties. Example of a problem on the 

strings whose two ends are tied in 0 < 𝑥 < 2. The strings are vibrated by providing the initial deviation 

and the initial transverse velocity. 

𝑓1(𝑥) = 2𝑥 − 3  dan  𝑓2(𝑥) = 0. 
The particular solution of such wave equations is equation (14) by obtaining, 𝐿 = 2 

𝑢(𝑥, 𝑡) =
2

2
∑ [𝐹1𝑠(𝑛) cos (

𝑐𝑛𝜋

2
𝑡) +

2

𝑐𝑛𝜋
 𝐹2𝑠(𝑛) sin (

𝑐𝑛𝜋

2
𝑡)]

∞

𝑛=1

sin
𝑛𝜋𝑥

2
, 

by substituting the initial conditions 𝑓1(𝑥) and 𝑓2(𝑥) obtaining 

𝐹1𝑠(𝑛) = ∫ (2𝑥 − 3)
2

0

sin
𝑛𝜋𝑥

2
𝑑𝑥 = −

2

𝑛𝜋
cos 𝑛𝜋 −

6

𝑛𝜋
+

8

𝑛2𝜋2 sin 𝑛𝜋 , 

𝐹2𝑠(𝑛) = ∫ 𝑓2(𝑥)
2

0

sin
𝑛𝜋𝑥

2
𝑑𝑥 = 0. 

Thus obtained 

𝑢(𝑥, 𝑡) = ∑ (−
2

𝑛𝜋
cos 𝑛𝜋 −

6

𝑛𝜋
+

8

𝑛2𝜋2 sin 𝑛𝜋) cos (
𝑐𝑛𝜋

2
𝑡)

∞

𝑛=1

sin
𝑛𝜋𝑥

2
. 

Shown Visualization of the movement of waves by taking the value of 𝑐 = 1. Figure 5 shows the sign 

of the wave when 0 < 𝑡 < 2, and figure 6, shows the movement of the surge in the two-dimensional 

form at various specific times. 

𝑢(𝑥, 𝑡) 
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Figure 5. Deviation visualization 𝒇𝟏(𝒙) = 𝟐𝒙 − 𝟑 

 

 
Figure 6. Wave movement at various times 𝒇𝟏(𝒙) = 𝟐𝒙 − 𝟑 

 

At each 𝑡 given, one seen the difference in wave deviation that occurs at each point 𝑥. Then 𝑡 = 0, the 

wave deviation form is the initial deviation 𝑓1(𝑥) = 2𝑥 − 3 indicated by a red line. For others 𝑡, the 

one user has a wave deviation shape that is different from the initial deviation. There is no deviation 

at the point 𝑥 = 0 and 𝑥 = 2, and this happens because the point 𝑥 = 0 and 𝑥 = 2 is the end point of 

the bound string, so the divergence is 𝑢(0, 𝑡) = 0 and 𝑢(2, 𝑡) = 0. 

 

4.5 Visualization and Interpretation of Wave Movements with Semi-Infinite String Lengths  
This subsection includes graphical representations of wave propagation along a semi-infinite string, 

highlighting the interaction of incident and reflected waves at the fixed boundary. The visualizations 
help in comprehending the complex dynamics of wave reflection and transmission [46-47]. Given an 

example of a problem on a string in which one end is bound at an interval 0 < 𝑥 < ∞. The strings are 

vibrated by providing the initial deviation and the initial transverse velocity. 

𝑓1(𝑥) = sin 𝑥   dan  𝑓2(𝑥) = 0. 
The solution of the wave equation uses the following formula of D'Alembert (15), 

𝑢(𝑥, 𝑡) =
1

2
 [𝑓1(𝑥 + 𝑐𝑡) + 𝑓1(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫ 𝑓2(𝑟)

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑑𝑟, 

by substituting the initial conditions 𝑓1(𝑥) and 𝑓2(𝑥) obtaining 
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𝑢(𝑥, 𝑡) =
1

2
 [sin(𝑥 + 𝑐𝑡) + sin(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫ 0

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑑𝑟. 

Thus obtained 

𝑢(𝑥, 𝑡) = sin(𝑥) cos(𝑐𝑡). 
Visualization of the movement of waves by taking values 𝑐 = 5 at intervals 0 < 𝑥 < 7. Figure 7 the 

movement of the wave when 0 < 𝑡 < 2, and figure 8 shows the sign of the wave in the two-
dimensional form at various specific times. 

 
Figure 7. Deviation visualization 𝒇𝟏(𝒙) = 𝒔𝒊𝒏 𝒙 

 

 
Figure 8. Wave movement at various times 𝒇𝟏(𝒙) = 𝒔𝒊𝒏 𝒙 

 

An intersection between the deviations and axes 𝑥 occurs at the point 𝑥 = 3,14 and 𝑥 = 6,28, or it can 

also be written as 𝑥 = 𝜋 and 𝑥 = 2𝜋. No deviation accurs at the point 𝑥 = 0 because it is the end point 

of the string bound, so that 𝑢(0, 𝑡) = 0. Since the initial condition chosen is 𝑓1(𝑥) = sin 𝑥, which will 

always intersect the axis 𝑥 at the point 𝑥 = 𝑛𝜋 with 𝑛 = 0, ±1, ±2, …, then these strings will intersect 

with the axis 𝑥 at the point 𝑥 = 0, 𝑥 = 𝜋, and it is multiple. 
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4.6 Visualization and Interpretation of Wave Movements with Infinite String Lengths 
Finally, the infinite string case is visualized to depict wave packet propagation and dispersion. These 

illustrations provide insights into the behavior of unbounded wave propagation and the role of 
dispersion in wave dynamics [48-49]. Given an example of a problem on strings whose two ends are 

not tied at intervals −∞ < 𝑥 < ∞. The strings are vibrated by providing the initial deviation and the 

initial transverse velocity. 

𝑓1(𝑥) = 0  dan  𝑓2(𝑥) = sin 2𝑥 + cos
𝑥

2
. 

The solution of the wave equation uses the following formula of D'Alembert (15), 

𝑢(𝑥, 𝑡) =
1

2
 [𝑓1(𝑥 + 𝑐𝑡) + 𝑓1(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫ 𝑓2(𝑟)

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑑𝑟, 

by substituting the initial conditions 𝑓1(𝑥) and 𝑓2(𝑥) obtaining 

(𝑥, 𝑡) =
1

2
 [0] +

1

2𝑐
∫ (sin 2𝑟 + cos

𝑟

2
)

𝑥+𝑐𝑡

𝑥−𝑐𝑡

𝑑𝑟. 

Thus obtained 

𝑢(𝑥, 𝑡) =
1

2𝑐
[sin(2𝑥) sin(2𝑐𝑡) + 4 cos (

𝑥

2
) sin (

𝑐𝑡

2
)]. 

Visualization of the movement of waves by taking values 𝑐 = 10 at intervals −5 < 𝑥 < 5. Figure 9 

shows the sign of the wave when 0 < 𝑡 < 3, and for figure 10 the movement of the wave in the two-

dimensional form at various specific times. 

 
Figure 9. Deviation visualization 𝒇𝟐(𝒙) = 𝒔𝒊𝒏 𝟐𝒙 + 𝒄𝒐𝒔

𝒙

𝟐
 

 

 
Figure 10. Wave movement at various times 𝒇𝟐(𝒙) = 𝒔𝒊𝒏 𝟐𝒙 + 𝒄𝒐𝒔

𝒙

𝟐
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There are differences in the form of deviations that occur at each point 𝑥 for a given value 𝑡. There are 

two points of intersection, namely 𝑥 = −3,14 and 𝑥 = 3,14 or 𝑥 = −𝜋 and 𝑥 = 𝜋. If the interval is 

extended, there will be another intersecting point with the axis 𝑥, at a point that is a multiple of 𝑥 =
−𝜋 and 𝑥 = 𝜋. 

 

5. Conclusion 
There are three states of the equation of the wave equation on the string based on giving the number 
of its boundary conditions. The resolution of the three states is obtained by applying three methods 

related to the Fourier Transform. The wave equation on a string with three forms of boundary 
conditions is solved using the finite dan infinite Sine Fourier Transform and Fourier Transform 

method. The three states of the wave equation on the string produce the same solution, i.e. in the form 
of D'Alembert's solution to the wave equation. As well as, there are differences in the form of 

deviations that occur at each point 𝑥 for each value 𝑡, and the movement of waves will form a periodic 

solution with periods 2𝜋. 
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