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Abstract. Disaster mitigation is a series of efforts to reduce disaster 
risk. One of the disaster mitigation efforts is the supervision of the 

implementation of spatial planning. Knowing the level of damage to 
buildings in a region in the event of a disaster can supervise the 

implementation of spatial planning. To predict the level of damage to 

buildings in an area, we can use the Bayesian network Model. 

Bayesian network is an extension of Naive Bayes. There are several 
types of Bayesian networks based on the variable type, namely discrete 

Bayesian network, continuous Bayesian network, and hybrid 

Bayesian network. A discrete Bayesian network is a Bayesian network 
model in which all the variables involved are discrete. Therefore, if 

there is a continuous variable, it is necessary to discretize the variable. 

In this paper, modifications are made to the algorithm commonly used 

in the clustering process to be used in the discretization process. The 
algorithm used is the K-Medoids algorithm, where this algorithm uses 

existing data as a representative of the cluster center. Then, the 

Bayesian network model and the K-Medoids algorithm were used to 
determine the level of damage to buildings due to the earthquake that 

occurred in West Sumatra in 2009. From 25,000 house damage data 

used in this study, we obtain an accuracy rate is 95.17%. 
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1. Introduction 
There are numerous barriers and limits to determining the exact moment of a natural disaster. On the 

other hand, natural disasters frequently cause extensive material and non-material losses. By 
implementing disaster mitigation, we can lessen the impact of disaster-related losses. Catastrophe 

mitigation is a set of strategies for reducing disaster risk through physical development, disaster 
awareness, and disaster capacity building (Article 1 paragraph 6 PP No. 21 of 2008 concerning the 

Implementation of Disaster Management). Disaster mitigation aims to lessen the impact of 
catastrophes, particularly on the population, serve as a foundation (guideline) for development 

planning, and enhance public awareness of how to deal with and reduce disaster impact/risk so that 
people may live and work securely. Supervising the application of spatial planning is one of the 

catastrophe mitigation strategies. Knowing the extent of damage to buildings in a disaster area can 
help maintain the performance of spatial planning. 

We can utilize the idea of the opportunity to forecast the extent of damage to buildings in a 
given location. When it comes to the concept of opportunity, Bayes' Theorem is unavoidable. Bayes ' 

theorem describes the link between the conditional probability of two events, which has critical 
applications in statistics. Naive Bayes, Hidden Naive Bayes, and Bayesian networks apply Bayes' 

theorem principles in the categorization process. The Bayesian network is a Naive Bayes extension. 
Based on variables, discrete, continuous, and hybrid Bayesian networks are the three forms of 

Bayesian networks. A discrete Bayesian network is a Bayesian network model in which all of the 
variables are discrete. 

In this paper, the author is interested in predicting the level of damage to buildings using the 

Discrete Bayesian network. In the Discrete Bayesian network, all variables must be discrete. 
Therefore, if there is a continuous variable, it is necessary to discretize the variable. Discretization is 

converting a continuous variable into a discrete variable and creating partitions in the range of values 
that the variable takes. Then a mapping is made between each interval in the partition and the discrete 

values of the numbers. Once the discretization is performed, the new variable can be treated as an 
ordinal. Discretization can be seen as one of the possible data preprocessing techniques. These 

techniques can significantly improve the overall quality of relationships extracted from the data and 
the time required for analysis [1]. Discretization can or must be applied before using many statistical 

models. In fact, there are many models designed primarily for processing categorical data, such as 
Naive Bayes (NB) [2] and Bayesian network (BN) [3]–[7]. Both models examine the relationships 

between the variables of interest and allow the coexistence of discrete and continuous variables in the 
dataset under investigation. 

Nevertheless, in the case of BN, the hybrid database enforces constraints on the parent-child 
relationship between variables. Discrete variables only need discrete parents [8], which can be an 

unrealistic constraint in many applications. Probabilities need to be estimated for BN and NB, making 
it challenging to handle continuous variables. To avoid this problem, they are generally assumed to 

be normally distributed, but this assumption does not always reflect the nature of these variables. 
Moreover, even if the model can handle continuous variables, the learning process is less efficient and 

effective [9]. 
After the discretization process for the new variable is carried out, the classification of the level 

of damage to the building is carried out using the Bayesian network. The Bayesian network (BN) is a 
graphical model for expressing information about uncertain domains that are probabilistic. Each node 

represents a random variable, and each edge reflects the related random variable's conditional 
probability [10]. Bayesian networks are familiar to be applied in various fields, including mining, 

finance, health, and disaster mitigation. 
In the case in this study, we modified the algorithm commonly used in the clustering process to 

be used in the discretization process. The algorithm used is the K-Medoids algorithm, where this 
algorithm uses existing data as a representative of the cluster center. Then, the Bayesian network 
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model and the K-Medoids algorithm were used to determine the level of damage to buildings due to 

the earthquake in West Sumatra in 2009. 

 

2. Method 

2.1. Procedure 
The research in this study was conducted by analyzing the theories relevant to the problems discussed 

based on the literature review. The development carried out is considering the discretization analysis 
of exogenous and endogenous variables to determine the level of damage to buildings using the K-

Medoids method. Then, clustering the level of damage to buildings using the Bayesian network model. 
Details of the research method can be seen in  

Figure 1. 
 

2.2. K-Medoids Algorithm 
K-Medoids is a partition clustering approach that reduces the distance between a cluster's labeled and 

center points. Each K-Medoids or PAM algorithm cluster is centered on an object (medoid). The K-
Medoids approach has the advantage of overcoming the K-Means algorithm's flaw of being susceptible 

to noise and outliers, which can cause objects with great values to depart from the data distribution. 
Another benefit is that the clustering process' outcomes are independent of the sequence in which the 

records are entered. Procedure for the K-Medoids algorithm [1], [11]: 

a) Set up 𝑘 cluster centers (number of clusters) 

b) Assign all data (objects) to the nearest cluster using the Euclidean distance measurement 
formula. 

c) Choose one object from each cluster at random as a candidate for a new medoid.  
d) Calculate the distance between each object in each cluster using the new candidate medoid.  

e) Calculate the total deviation (𝑆) by comparing the new distance's total value to the old 

distance's total value. For 𝑆 < 0, these objects are combined with cluster data to create a new 

collection of 𝑘 medoids.  

f) Repeat steps 3 to 5 until there is no medoid change to obtain clusters and their respective 
cluster members. 

Not only can the K-Medoids technique be used to group objects, but it can also be used to 

discretize continuous variables. The number of features is limited to two due to discretization. The 
first function is a discretized variable, and the second function is an assumed constant auxiliary 

function. 

 
2.3. Bayesian Network 
Bayesian network are graphs made up of nodes and arcs that indicate interactions between variables. 

Consider the random vector 𝑿 = (𝑋1, . . , 𝑋𝐻), defined in the state space 𝒳 = 𝒳1 ×. .× 𝒳𝐻, where 𝒳𝑖 is 

the state space for 𝑋𝑖, and 𝒳𝑖  = {𝑥𝑖
(1)

, … , 𝑥𝑖
(𝐾)

} for 𝑖 = 1, … , 𝐻. If the variable 𝑋𝑖 is affected by the 

variable 𝑋𝑗, then (𝑋𝑗, 𝑋𝑖) ∈ 𝐸. For the variable 𝑋𝑖, 𝛱𝑖 = {𝑋𝑗|(𝑋𝑗 , 𝑋𝑖) ∈ 𝐸} where 𝛱𝑖 is the parent set for 

the variable 𝑋𝑖, which is the set of variables in the model whose value is a direct cause of the value of 

the variable 𝑋𝑖 [12]. 
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Figure 1. Research Methodology 
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3. Result and Discussion 

3.1. Research Object 
Data on damage to houses in Padang City due to the earthquake that hit West Sumatra on September 

30, 2009, was obtained from the Regional Disaster Management Authority (RDMA) of Padang, and 
historical earthquake data from the Meteorological, Climatological, and Geophysical Agency 

(MCGA). Twenty-five thousand individual house-building data were used to create Bayesian 
networks. Five exogenous factors and three endogenous variables were employed in this investigation. 

Exogenous variables are not influenced by other variables, while other variables influence endogenous 
variables. 

 

Table 1. Types of Research Variables 

Variable Type of Variable 

Exogenous Variable Construction type (𝑋1) Discrete 

 Epicentral distance (𝑋3) Continuous 

 Soil type (𝑋4) Discrete 

 Slope (𝑋6) Discrete 

 Distance to fault (𝑋7) Continuous 

Endogenous Variable Peak Ground Acceleration (𝑋2) Continuous 

 Landslide risk (𝑋5) Discrete 

 Damage rate (𝑋8) Discrete 

 
The variables were chosen based on past literature or study, including research undertaken by 

Bayraktarli et al.  [13], [14] and Li et al. [15], [16]. Table 1 shows that there are three continuous 

variables in the research data there are Peak Ground Acceleration (𝑋2), epicentral distance (𝑋3), and 

distance to fault (𝑋7). The K-Medoids algorithm is used to discretize variables before using the 

Bayesian network to classify the level of damage to buildings. 

 

3.2. K-Medoids Algorithm for Variable Discretization 
In addition to being used for object clustering, the K-Medoids algorithm can also be used to discretize 

continuous data. The number of features in the discretization process is limited to only two. The first 
feature is a discretizable variable, and the second feature is an assumed constant auxiliary feature. If 

there are 𝑀 objects in a set of objects 𝑭 = {𝒇1, . . . , 𝒇𝑚, . . . , 𝒇𝑀} then the set of variables is 𝑿 = {𝑿1, 𝑿2},, 

where 𝑿1 = {𝑓11, . . . , 𝑓21 , . . . , 𝑓𝑀1} and 𝑿2are constant. The following stage in the clustering procedure 

is the same as the phases in the K-Medoids method. The same category applies to objects in the same 
cluster. 

However, before discretizing the variables, the best cluster determination for each variable must 

be found. The elbow approach was utilized to determine the ideal number of clusters in this 
investigation. For each K, the sum of square error (SSE) value is determined using the elbow method. 

The SSE had seen a significant decline and has the highest number of clusters [17]. The optimal 
number of clusters for each variable using the Elbow method, there are two clusters, could be deduced 

from Figure 2. After determining the best number of clusters for each variable, the variables are 
discretized using the K-Medoids algorithm. Figure 3 shows the discretization findings for each 

variable. 
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(a) 

 
(b) 

 
(c) 

 

Figure 2. Determination of Optimal K using the Elbow Method for (a) Peak Ground Acceleration (b) 
Epicentral Distance (c) Distance to Fault 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 3. Discretized K-Medoids Results for (a) Peak Ground Acceleration (b) Epicentral Distance 
(c) Distance to Fault 

 
After completing the grouping procedure as indicated in Figure 3, clusterization validation is 

performed, which is referred to as discretization validation in this case. The number of objects with a 
positive silhouette coefficient value is compared to the total number of objects for each variable at the 
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variable discretization validation level (Figure 4). The discretization validation level in this scenario is 

98 percent for the variable Peak Ground Acceleration (𝑋2) and epicentral distance (𝑋3), and 96 

percent for the variable distance to fault (𝑋7). 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4. Silhouette Coefficient Value for (a) Peak Ground Acceleration (b) Epicentral Distance (c) 
Distance to Fault 

 

3.3. Formation of Bayesian Network Structure 
Forming a BN structure is the next stage. Expert advice regarding numerous earlier scientific writings, 

including Bayraktarli et al. [13], [14] and Li et al. [15], [16], was used to form the BN structure in this 
study. Two key elements, exposure factors and system resilience factors impact the amount of damage 

to buildings caused by earthquakes [12]. Exposure considerations include magnitude, depth, 
epicentral distance, hypocentral distance, and other earthquake-related characteristics. The system 

resilience factor is linked to the environmental factors that cause disasters and the building's attributes. 
In 2012, Li focused his research on the extent of damage caused by earthquakes from a human 

perspective, which is influenced by exposure variables and system resilience factors. 
Meanwhile, the research conducted by Bayraktarli [13], [14] only pays attention to the level of 

damage from the exposure factor. The relationship between variables and the probability for each 
variable can be seen in Figure 5. From each probability value of the level of damage, it can be 

concluded that the West Sumatra earthquake in 2009 caused damage to houses in the city of Padang, 
mostly at level two, which is moderate damage. 
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Figure 5. Structure of BN and NPT for Each Node 

 
Table 2. Types of Research Variables 

Damage Rate (𝑋8) Actual  

Prediction Slight (1) Medium (2) Heavy (3)  

Slight (1) 9457 552 482 10491 

Medium(2) 16 13650 2 13668 

Heavy(3) 34 121 686 841 

 9507 14323 1170 25000 

 

Furthermore, an assessment of the model's performance is carried out. The initial stage of 
performance evaluation is compiling a confusion matrix for the level of damage. The variable level of 

damage consists of three states, namely mild (state 1), moderate (state 2), and severe (state 3). In the 
confusion matrix, a comparison of the predicted and actual results is carried out, and complete details 

can be seen in Table 2. 
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Figure 6. Structure of BN and NPT by Entering State of Variables 

Then from the confusion matrix, the accuracy of each model is calculated by comparing the number 
of correct values with the amount of data. The level of model accuracy when using the K-Medoids 

discretization method is as follows, 

Accuracy rate =
9457 + 13650 + 686

25000
=95,17% 

The calculation results show that the model's accuracy rate is 95.17%. 
 

Table 3. Position of Variable Determinants of Damage Level 

Variable State 

Construction type (𝑋1) 1 

Peak Ground Acceleration (𝑋2) 2 

Epicentral distance (𝑋3) 2 

Soil type (𝑋4) 2 

Landslide risk (𝑋5) 2 

Slope (𝑋6) 4 

Distance to fault (𝑋7) 2 
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The BN model provides a probabilistic approach to obtaining an inference. Inference in a BN is 

obtained from the relationship of each node in the structure. Suppose the values of all the variables 
determining the level of damage are known, as shown in Table 3. Then, using the GeNIe software, 

the Bayesian network structure and the probability table for each variable are obtained, as shown in 
Figure 6. So, with the value of variables that affect the level of damage as shown in Table 3, it is most 

likely that the level of damage is in the low category with a probability of 100%. 

 

4. Conclusion 
Using the K-Medoids Algorithm, we create a BN model in terms of variable discretization in this 

study. The algorithm is changed by assuming that one of the features is variable and the rest are 

constant. We offer the BN modeling, which involves various factors, including construction type (𝑋1), 

Peak Ground Acceleration (𝑋2), epicentral distance (𝑋3), soil type (𝑋4), landslide risk (𝑋5), slope 
(𝑋6), and the distance to fault (𝑋7), in assessing the extent of building damage caused by earthquakes. 

We built the BN model as one of the earthquake catastrophe mitigation attempts based on current 
data. This model can assist the government or the community in reducing the danger of building 

damage. BN may be enlarged to satisfy all requirements with modest tweaks (adding more nodes and 
linkages and changes to the marginal and conditional probability tables). Like other decision systems, 

Bayesian networks are a helpful tool for calculating event probabilities because they are an ideal 
representation of prior causal knowledge and observed data. 
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