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Abstract. Infant mortality is an indicator to determine the degree of 
public health. Infant mortality is death that occurs in the period from 
birth to before the age of one. The high rate of infant mortality 

indicates that the quality of public health services is not optimal. The 

number of infant deaths is an example of count data that follows a 

Poisson distribution, so it can be analyzed using Poisson Regression. 
The assumption that must be met when using this method is the 

equidispersion or variance of the response variable is equal to mean. 
However, this condition rarely occurs because usually the counted 
data has a greater variance than the mean or it is called 

overdispersion. One way to solve this problem is to use the Negative 

Binomial Regression method. The data used in this study is the case 

of infant mortality in the city of Padang. First, we model the data 
using Poisson Regression, then we check the assumption, if there is 

overdispersion, we handle it by modeling the data with Negative 

Binomial Regression. The results showed that the equidispersion 
assumption could not be met so that the data was modeled with 

Negative Binomial Regression. The model obtained is  
   e p(                                           ) 
                  ). Based on AIC we can also conclude that 

Negative Binomial Regression is the best method to model this data. 
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1. Introduction  

Health is one of the areas that the government focuses on in order to improve the welfare of society. 

Various attempts were made to improve the standard of living therefore a high degree of public 
health was achieved. Infant mortality is one indicator to determine the degree of public health and 

quality of life of a population[1], [2], [3]. The cause of infant mortality not only due to medical 
aspect but also non-medical aspect such as access to healthcare including antenatal checkups, low 

economy level, human error, etc [4], [5], [6]. The Infant Mortality Rate (IMR) for West Sumatra 
Province based on the 2010 Population Census is higher than the national IMR. The IMR for West 

Sumatra in 2006 was 30 per 1000 live births, while the IMR for Indonesia was 26 per 1000 live births 
[7]. Padang as the provincial capital contributed the highest infant mortality rate in 2016 compared 

to other cities and districts in West Sumatra. The following is a graph of infant mortality cases in 
Padang in 2012 – 2017 [8]. 
 

 
Fig 1. Number of Infant Mortality in Padang 

 

In Figure 1, it can be seen that infant mortality in Padang has fluctuated. More effort is needed 

to reduce cases. Therefore, it is important to know what factors can cause death in infants and how 
much these factors contribute. One method that can be used is regression analysis. Regression will 

analyze the relationship between the response variables, both continuous and discrete, for example 
in the form of binary, nominal, ordinal, truncated or chopped data[9], [10]. 

Count data is part of the discrete response variable. This data is non-negative and states the 
number of events in an interval of time or space. When an event rarely occurs in a large sample 

space, it follows a Poisson distribution [11]. The number of infant deaths is an example of a count 
data that follows a Poisson distribution. Poisson regression is derived from the Poisson distribution, 

hence to analyze this data Poisson regression is used. 
In Poisson regression analysis, there are assumptions that must be fulfilled. The assumption is 

that the variance of the response variable is the same as the mean [12]. In fact, this condition is very 
rare because usually the count data has a greater variance than the mean or is called overdispersion 
[11], [12]. This condition will result in inefficient parameter estimation. One way to solve this 

problem is to use the Negative Binomial Regression method. The Negative Binomial Regression is 
derived from the Negative Binomial distribution. Unlike Poisson distribution, it has additional 

parameters so that the variance can exceed the mean. As a result, the Negative Binomial Regression 
method can overcome the overdispersion problem in Poisson Regression. As for the 

multicollinearity assumption, it does not need to be checked because Negative Binomal Regression, 
which is part of the Generalized Linear Model, does not use Least Square but Generalized Inverse 
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therefore it does not require a non-singular (X'X) matrix [13]. There have been several studies 

conducted using negative binomial in order to overcome the overdispersion in several different 
object such as utilization of antenatal care [14], cyberbullying [15], health behavior [16], actuarial 

pricing [17], etc. Meanwhile another alternatives for modeling  infant mortality are Poisson 
Regression Approach Based on Local Linear Estimator [18], Panel Data Analysis [5], [19], Spatial 

Statistics Approach [20] and so on. 
The purpose of this study was to model data on infant mortality cases, therefore this research is 

an applied research. First, we model the data using Poisson Regression because the data is count 
data [11]. Then we check the assumption, if there is overdispersion, we handle it by modeling the 
data with Negative Binomial Regression [12]. 
 

Poisson Regression 
Poisson regression is a nonlinear regression to model random events where the probability of 
occurrence is relatively small in a certain time interval or at a certain place. The response variable in 

Poisson regression is discrete data that follows a Poisson distribution which is an exponential family, 
hence this regression is part of the Generalized Linear Model (GLM). GLM has three components: 

a random component, a systematic component and a link function [21]. The probability function for 
the Poisson distribution is: 

 (    )  
      

   
                                                                     (1)           

       (              )                                (2) 

Based on Equation (2), the link function is    , then the relationship between the mean response 

variable and the linear combination of the predictor variables is:  

                                                     
    or     

  
                                                               (3)                                                   

Equation (3) is a Poisson regression model. The β parameter in Poisson regression was estimated 

using the maximum likelihood method where implicit and nonlinear equations were generated. The 
β parameter estimate is obtained by maximizing the function using the iterative method. The 

numerical iteration methods that can be used are Newton-Raphson or Fisher Scoring. 

Poisson regression inherits from the Poisson distribution that the mean and variance are equal, 
otherwise known as equidispersion. Therefore this assumption must be fulfilled. If the variance value 

is less than the means value, it is called underdispersion, and when the variance value is greater than 
the mean, an overdispersion condition occurs. One solution to dealing with this overdipersion is 

Negative Binomial. 

 

Negative Binomial Distribution 
The Negative Binomial Distribution is a distribution that has many approaches. There are several 

ways to approach the Negative Binomial distribution, including that it can be approached as a 
Bernoulli experimental sequence and the Poisson-Gamma mixture distribution [12]. The classic 
approach of the Negative Binomial distribution that is often used is the Negative Binomial 

distribution as a Bernoulli experiment sequence: the number of Bernoulli trials required to obtain r 

successes, where each repetition is independent, and the probability of success in each experiment is 
constant is p, while the probability of failure is 1 – p. Suppose that the random variable X states the 

number of experiments needed to get r successful, then X has a Negative Binomial distribution with 

the probability function [22] as follow: 

  (       )  {
(
 - 

 - 
)   ( - ) -               

                                                        

                               (4) 
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The probability function of the random variable X can be denoted in other terms. Suppose there are 

a number of y failures before the r th success, then x is the sum of y failures plus r successes or x = y 

+ r. Thus, a new random variable Y will be formed, which states the number of failures before r 

success occurs with the variable transformation method where the transformation function is Y = X - 
r. Then the random variable Y has a probability function  as follows: 

  (       )  {
(
   - 
 

)   ( - )           

                                                    

                                   (5) 

The moment generation function for the negative binomial distribution is: 

  ( )   
 (     )                                                               (6) 

The negative binomial distribution has the following mean and variance: 
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The Negative Binomial Distribution formed from Poisson-Gamma [11], [12], [23] has the following 

probability function:  
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Equation (9) above has a similar form to the probability function form of the negative binomial 

distribution in equation (5) where    
 

 
  dan   

 

(    )
. 

The mean and variance of the negative binomial distribution are: 

 ( )                                                                                      (10) 

   ( )                                                                               (11) 
 

Negative Binomial Regression 
The Negative Binomial Regression is derived from the Negative Binomial distribution. Unlike the 
Poisson Distribution, this distribution has an additional parameter hence the variance can exceed the 

mean [21]. Suppose we want to know the relationship between a response variable Y and k 

explanatory variables           . The regression model uses the relationship between the response 

variable Y and the explanatory variables             as follows: 

                                                                           (12) 

where            represents the number of unknown parameters and    states the error for  the-ith 

observation and assumes that the expected value of    is ( (  )   ). If equation (12) above is 

expressed in vector form, it becomes: 

     
                                                                             (13) 

                                              where   
  [           ] dan   [

  
  
 
  

]  

Suppose that it is assumed that the expected value for    is  (                             )  
   and previously it has been assumed that the expected value for    is 0, then it will be obtained: 

    (                             ) 
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or if expressed in vector form will be 

     
                                                                              (14) 

In a negative binomial model,    is a variable in the form of counted data therefore    s a non-

negative integer, so the expected value of    cannot be negative either. Based on equation (14), this is 

contradictory because the value space for   
   is the real number in the interval of (    ). This 

makes the regression model unable to be used to analyze the counted data. To overcome this 

conflicting situation, a link function is used that connects the fitted value (  ) with the linear 

predictor   
  . As a member of the exponential family, the negative binomial has the canonical link 

function, (
  

    
)    

   , with invers     
 

 [   (-  
  )- ]

. The inverse form shows that the link 

function produces a fairly complicated shape. As a result, the interpretation of the regression model 

parameters will be more difficult. The negative binomial model generally uses a logarithmic link 
function: 

        
                                                                       (15) 

The Negative Binomial Model can use log links because        and    
   will be defined in the 

(   ) interval and interpretation of the regression parameters will become easier. After obtaining 

the correct link function, it can be stated that the binomial regression model is negative for modeling 
the count data: 

  [ (     )]    (  )    
    , ;  i=1,2,…,n ,                                     (16) 

Then it can be obtained: 

       (  
  )                                                                (17) 

2. Experimental Sections 
The data used in this study are secondary data obtained from the publication of the Dinas Kesehatan 

Kota Padang “Profil Kesehatan Tahun 2019” [24] which contains information about the general 
description of the city of Padang, the situation of health status, the situation of health efforts, and the 

situation of health resources in 2019. The research variables used were the number of infant 
mortality cases (Y), the percentage of babies with low birth weight (X1), the percentage of babies 
who were exclusively breastfed (X2), the percentage of pregnant women who received blood booster 

tablets (X3), the percentage of deliveries assisted by non-medical personnel (X4), the percentage of 
infants who received complete basic immunization (X5), and the percentage of infants who received 

vitamin A (X6). Each line of observation is a subdistrict in Padang. The number of observations of 
subdistrict in Padang is 11 observations. 

The steps in modeling infant mortality cases at the Public Health Center Padang are: first, we 
conduct descriptive analysis of the response variables and explanatory variables. Descriptive analysis 

is an important step in conducting statistical analysis. Descriptive analysis can stand on its own as a 
research product, such as when it identifies phenomena or patterns in data that have not previously 

been recognized [25]. Then, we plotted the correlations between the variables. We can refer to this 
step as exploratory analysis. 

The next step is modeling with the Poisson Regression method. Model parameters will be 
estimated and AIC will be calculated so that a Poisson Regression model will be formed. After that 

we perform overdispersion testing. If the mean is equal to the variance, we can use the Poisson 
Regression model, but if this assumption is violated, we will handle overdispersion using Negative 

Binomial Regression. 
When we decide to use Negative Binomial Regression, we estimate the model parameters first. 

Afterwards, perform regression parameter testing simultaneously and partially. Then interpret the 
resulting model. We can compare the AIC value of the Poisson regression model with the AIC of 
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the negative binomial regression model, the smaller the better. The last step, making conclusions and 

suggestions. The complete steps given in the flowchart below 

 
Fig 2. The Flowchart 

3. Results and Discussion 
3.1 Descriptive Analysis 
As initial information to find out the characteristics and patterns of data that will be used for further 
analysis, it is necessary to look at the statistical descriptions for each of the variables used in this 

study. This descriptive analysis was carried out to see the characteristics of the data to be processed. 
The descriptions of the variables used in this study are presented in Table 1.From Table 1, it can be 

seen that the distribution form of each variable by looking at the comparison of the mean value and 
the second quartile. If the mean value is greater than the value of the second quartile, the spread will 

skew to the right. Meanwhile, if the mean value is smaller than the value of the second quartile, the 
distribution will skew to the left. And if the mean is equal to the second quartile then the data is 

spread normally.  
 

Table 1. Descriptive Statistics of the Variables Used in the Study 

Variable Minimum Quartile 1 Quartile 2 Quartile 3 Maximum Mean 

Y 2.00 5.50 8.00 10.50 17.00 8.04 

X1 0.00 1.06 1.46 2.33 3.75 1.73 
X2 52.02 72.06 83.33 87.60 100.00 79.65 

X3 67.09 88.07 95.29 98.22 100.58 91.50 

X4 1.36 6.14 8.84 16.47 36.71 12.45 
X5 65.84 89.06 89.78 93.35 97.10 89.73 

X6 41.93 57.42 84.03 90.36 96.04 75.26 



206 
 
 

http://www.eksakta.ppj.unp.ac.id/index.php/eksakta  

 

Fadhilah Fitri, Fitri Mudia Sari, et al. 

 

Based on Table 1, it can be seen that several variables have skew distribution to the right, 
because the mean value is greater than the value of the second quartile, they are the variables Y, X1, 

dan X4. The X2, X3, X5, and X6 ariables have a distribution that skew to the left. This also shows that 
there are several health centers where the percentage of babies is exclusively breastfed (X2), the 

percentage of pregnant women who receive blood booster tablets (X3), the percentage of babies who 
receive complete basic immunization (X5), and the percentage of babies who receive vitamin A (X6) 

less than other Puskesmas in Padang. Therefore,  the attention of the City Health Office is needed to 

make it equal.  
Next, Figure 2 will show a correlation plot between variables. The color of blue shows a positive 

correlation between variables, while the red one shows a negative correlation. The smaller the 

correlation, the smaller the circle size and the faded the color will be. From Figure 2 it can be seen 
that some of the independent variables used in the study have a high correlation, so it can be 

concluded that there is multicollinearity between the independent variables used in the study. 
However this will not be a problem in Poisson Regression analysis.  

 
Fig 3. Correlation Between Variables Used in the Study 

 

 

 

 

 

3.2 Poisson Regression Analysis 
The following is an estimate of the Poisson regression model parameters. 
 

Table 2. Poisson Regression Model Parameter Estimation 

 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) -8.116 6.277 -1.293 0.196 

X1 0.276 0.197 1.406 0.159 

X2 -0.001 0.009 -0.115 0.909 

X3 0.054 0.046 1.181 0.238 
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X4 0.121 0.048 2.506 0.012 

X5 0.048 0.033 1.456 0.145 

X6 -0.003 0.004 -0.675 0.499 

Deviance = 33,640 DF = 4 

AIC = 97,212 

 

The Poisson regression model for the number of infant deaths using the six explanatory variables 

that have been selected shows that: at the 5% significance level, the variable that has a significant 
effect on infant mortality is the percentage of deliveries assisted by non-medical personnel (X4). Five 

other variables still have an effect on infant mortality, but the effect of these five variables is not too 
significant. The Poisson regression model that is formed is: 

   e p(                                                             ) 
The next step is the overdispersion test. Overdispersion occurs when the variance value is greater 

than the mean, overdispersion can also be seen from the ratio between the devian residue and the 

degrees of freedom [26], [27]. The ratio value between the remaining deviance and the degrees of 
freedom is 8.41, this value is greater than 1. This indicates that the Poisson regression model is 

overdispersed, so the Poisson Regression model is not appropriate to use in modeling infant 
mortality in Padang. One method that can be used to overcome overdispersion cases in Poisson 

Regression is the Negative Binomial Regression Model. 

 

3.3 Negative Binomial Regression Analysis 
The initial step in negative binomial regression modeling is to determine the initial theta value. 

Based on the trial-error results, an initial theta of 7.9294 was obtained. Therefore, a negative 
binomial regression modeling was carried out with an initial theta of 7.9294. Table 3 shows the 

parameter estimates of the Negative Binomial Regression model. 
 

Table 3. Negative Binomial Regression Model Parameter Estimation 

 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -6.1384 11.6395 -0.527 0.598 

X1 0.2489 0.3307 0.753 0.452 

X2 -0.0055 0.0168 -0.325 0.745 

X3 0.0301 0.0825 0.365 0.715 

X4 0.1038 0.0887 1.171 0.242 

X5 0.0554 0.0563 0.984 0.325 

X6 -0.0005 0.0080 -0.066 0.948 

Deviance = 10,575 DF = 4 

AIC = 87,997 

 

The Negative Binomial Regression Model on the number of infant deaths using the six 

explanatory variables that have been selected shows that there are no explanatory variables that have 
a significant effect on infant mortality at the 5% significance level. The choice of this level of 

significance depends on the needs of the researcher. For example, research conducted by Pratama 
and Wulandari (2015) used a significance level of 20% [28]. Then the research conducted by 

Hajarisman (1998) who chose to use a significance level of 30% [29].  The size of this significance 
level will affect the confidence interval. The greater the selected significance level, the narrower the 

confidence interval will be. In this study, the significance level used was 25%. As the result, the 
variable that had a significant effect on infant mortality was the percentage of deliveries assisted by 

non-medical personnel (X4). Five other variables are still included in the model, this is done because 
there is the possibility that a weak variable when analyzing a single variable, becomes an important 
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variable if it is done simultaneously with other variables [29]. The Negative Binomial regression 

model that is formed is: 

   e p(                                                             ) 
Based on the variables that have a significant effect on infant mortality in Padang, it can be 
concluded that for each additional 1 percent of births assisted by non-medical personnel, it will 

increase the number of cases of infant mortality by e p(      )           cases, assuming other 

variables are constant. 
 

4. Conclusion 
The data on infant mortality in Padang cannot be modeled using Poisson Regression because of the 
violation of the overdispersion assumption. Therefore, it is handled by using Negative Binomial 

Regression which produces the following model: 

   e p(                                                             ) 
Based on the variables that have a significant effect on infant mortality in Padang, it can be 
concluded that for each additional 1 percent of births assisted by non-medical personnel, it will 

increase the number of cases of infant mortality by e p(      )           cases, assuming other 

variables are constant. Based on AIC we can also conclude that Negative Binomial Regression is the 
best method to model thus data. AIC of Negative Binomial Regression is 87,997 meanwhile AIC of 

Poisson Regression is 97,212 
The suggestion based on this research is that the government should reduce the percentage of births 

assisted by non-medical personnel by, for example, by providing information to the community to 
reduce this because of the risks that may occur, etc. 
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