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Abstract. National Measurement Standards- National Standardi-

zation Agency of Indonesia (SNSU-BSN) as the National Metrology 
Institute of Indonesia has provided time and frequency calibration 

services for customers. Time and frequency equipment should be 

calibrated to traceable to the SI units. The calibration process can be 

carried out in a calibration laboratory. However, some measuring 
devices cannot be sent to the calibration laboratory. One of the 

devices that cannot be sent to the calibration laboratory is Cesium 

atomic clock. The Cesium atomic clocks must be calibrated to get the 
time difference with the local coordinated universal time (UTC), 

namely UTC(IDN). Therefore, to calibrate the Cesium atomic clock, 

a remote calibration method is needed. The remote system is also 

intended to conduct the calibration more effective and efficient. This 
method requires two Global Positioning System (GPS) receiver 

devices placed on the client-side and a calibration laboratory. For 

this reason, an algorithm for remote calibration has been developed. 
The algorithm has been tested to calibrate Cesium-3 of SNSU-BSN 

against UTC(IDN). The time difference between Cesium-3 and 

UTC(IDN) was 5.8 microseconds by using the algorithm. Based on 

the algorithm that has been built, it was concluded that the algorithm 
can be used to perform remote calibration for the related customer. 
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1. Introduction 
Atomic clock Cesium(1-23) HP 5071A is a time and frequency standard managed by the 

National Standardization Agency (BSN), symbolized as Coordinated Universal Time UTC(IDN). 
Has followed international comparisons, so that UTC(IDN) traceability is maintained as Indonesia's 

national time and frequency standard. 
Dissemination of the standard time and frequency values that has been carried out by BSN is 

through the calibration service for measuring time and frequency as well as time synchronization 
services through the Network Time Protocol (NTP). Based on the results of evaluations conducted 

through audits by experts in the field of time and frequency metrology and stakeholder input, the 
time dissemination system at BSN has not been able to serve optimally especially stakeholders who 

have an atomic clock source. Problems encountered are that the equipment cannot be moved or 
brought to the SNSU - BSN laboratory. For this reason, it is necessary to develop a remote 

calibration system for atomic clock sources against the Indonesian national time UTC(IDN) 
standard. 

To build a remote calibration system, it is necessary to develop an infrastructure in the form of 
procurement of a remote calibration system, which is a GPS Receiver and data processing software 

from the remote calibration [24] 
 

2. Time Standard System 
2.1 Cesium Atomic Clock 

The Cesium atomic clock is a source of time and frequency that has a very accurate and stable 

output [25]. As explained in 26th CGPM (November 2018) at BIPM "The second, symbol s, is the 
SI unit of time. It is defined by taking the fixed numerical value of the cesium frequency, the 

unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9 192 631 
770 when expressed in the unit Hz, which is equal to s-1". Based on these definitions, the Cesium 

atomic clock is the primary standard for time and frequency. 
The primary standard of time and frequency managed by SNSU - BSN is the HP 5071A (Cs-1) 

cesium atomic clock. In addition to maintaining the traceability of the HP 5071A (Cs-1) cesium 
atomic clock time and frequency standards internationally, SNSU - BSN disseminates the 1 pps 

value and the 10 MHz frequency produced by the HP 5071A cesium atomic clock through 
calibration and synchronization. Synchronization of Indonesian national standard time UTC(IDN) 

is disseminated through an NTP server where the server gets a 1 pps reference signal as the time that 
will be distributed to all time regions in Indonesia, namely Indonesian Time. 

 
2.2 GPS Receiver 

GPS time and frequency receiver is high-precision time and frequency instrument that generates 
time and frequency outputs from its GPS [26].  GPS receivers consist of the antenna, RF front end, 

local oscillator, and navigation processor. An antenna is the first part of the GPS receiver that must 
be able to receive right-hand circularly polarized (RHCP) signals because this is the type of signal 
transmitted by GPS satellites [27]. GPS time and frequency transfer is a method for sharing a precise 

reference time using a GPS receiver. GPS time is a precise time standard that is related to UTC.  A 
GPS receiver has the output of 1 PPS that can be used for remote application.  The GPS receiver 

should be calibrated to ensure the accuracy and long-term stability of time transfer. A GPS receiver 
and its antenna with cable can be sent to a time laboratory for the calibration. Signals of GPS 

satellite are steered to UTC and it result an excellent of the long-term accuracy of a GPS receiver. 
GPS receiver provides an automated time transfer that used by time laboratories to compare theirs 

standards [28]. 
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3. Time Interval Measurement 
Base of remote calibration is time interval measurement. Time interval is the time that shows the 

duration of an event. For example a runner runs 100 meters for 9.6 seconds or baking a cake is 
required time for 30 minutes. On devices such as electronic time counters, time interval 

measurement is measuring the time taken between the START event and the STOP event. Time 
interval counter can measure electric delay, pulse width and other time events. 

In general, measurements using a time interval counter requires two signals that function as 
START and STOP and a signal a reference used to calculate the time interval between START and 

STOP like shown in Fig. 1. The START signal will open the gate to indicate start time calculation, 
while the STOP signal will close the gate indicates the cessation of the time calculation process [29]. 

And the measurement results obtained by calculating the accumulated clock pulses when the gate is 
open. Good result of time interval measurement have a big effect to guarantee the remote calibration 

accuracy [30].  
 

 

 

 
Figure. 1.  Time Interval Measurement. 

 

4. Algorithm 
Algorithm of time and frequency remote calibration required Common GNSS Generic Time 

Transfer Standard (CGGTTS) file. CGGTTS is a GPS receiver output in certain file format. The 

resulting CGGTTS file format can be seen in Fig. 2. 
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Figure. 2. CGGTTS file 
 
 

The CGGTTS data format above explains the name of the tracked satellites, for example 

PRN 22 produces a time comparison of 1 pps UTC(IDN) with satellite 22 of 4692079 ns. 
Measurements were taken at MJD 58325 (July 26, 2018), date in Modified Julian Date format [31] 

at 00.02.00 UTC. The file is then saved with the names xxxxx.txt.  
 
Algorithm of CGGTTS file calculation: 

 Get the files from two receivers(receiver 58 and receiver 57) that have the same MJD 

(same file name) 

 Select a STTIME segment 

 Take the REFSYS value with the same STTIME and PRN 

 Make sure that besides STTIME and PRN are the same, they also have the same IOE 

value 

 Correct the REFSYS value using the below equation  

REFSYS (corrected) = REFSYS - INT DLY - CAB DLY + REF DLY…………... (1) 

 Subtract the REFSSY (STD) value with the REFSYS (UUT) value 

 Calculate the average of the previous calculated values, then the time difference is 

obtained when a certain STTIME 

 Do steps 2 through 6 for the other STTIME segments 

 Calculate the average of all STTIME to get the time difference in one MJD 
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5. Results and Discussion 
Algorithm of remote calibration used to calculate time interval difference between atomic clock Cs-3 

and UTC(IDN). Each clock was connected to GPS receiver after two GPS receiver running, 
CGGTTS data was downloaded from each GPS receiver. Then using algorithm above, the result of 

remote calibration between Cs-3 and UTC(IDN) shown in Table 1. And fig. 3 below shown result 
time difference between Cs-3 and UTC(IDN) against time. 

 

Table 1. Data comparison between Cs-3 and UTC(IDN) 
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Figure. 3. Measurement result of time difference of Cs-3 against UTC(IDN) 

 
From the table 1 shown that each STTIME GPS receiver received signal from 11 GPS 

satellite averaged.  Indonesia can received many signal satellite in one time due to Indonesia 
position in equator. Time difference between STTIME was 16 minutes because GPS receiver need 

time to tracked GPS receiver and to calculate value and created CGGTTS file. 
Figure 3 shown that time difference between Cs-3 and UTC(IDN) increased against time. 

Time difference increased more than 40 ps each STTIME. The biggest factor was from Cs-3. 
Because Cs-3 is newest atomic clock in SNSU-BSN. And it never been fine adjusted before. From 
figure 3 also shown that averaged time difference between Cs-3 and UTC(IDN) was 5.8 

microseconds at MJD 58720(August 25, 2019). 
 

6. Conclusion 
National Measurement Standards-National Standardization Agency of Indonesia (SNSU-BSN) has 

developed algorithm of time and frequency remote calibration to calibrate atomic clock on remote 
area. The algorithm has been tested to calibrate Cesium-3 of SNSU-BSN against UTC(IDN). The 

time difference between Cesium-3 and UTC(IDN) was 5.8 microseconds by using the algorithm. 
The algorithm can be used to perform remote calibration for the related customer. 
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