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Abstract. This paper discusses some operations on mixed monotone operator in Banach 

space, especially addition an multiplication operations. We will prove the sum and 

product of two mixed monotone operators. The proof using some relevant definitions. 

The result is the sum o of them is a mixed monotone operator and the product is  too if 

both  satisfy some conditions.  
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1. Introduction 

There are many classes of real functions.  One of them is a monotone function. On the 

other side, we have known a term called mixed monotone operator, that is a function defined 

on the Cartesian Product of two subsets of Real Banach Space[1-9, 13]. It has been well-known 

that under operation of addition, the sum of two monotone functions is monotone function too, 

but not for case of multiplication operation[10]. Inspired by both of  result above, we interested 

on knowing how about addition and multiplication of two mixed monotone operator defined in 

real Banach space. Hence, we will prove it here. The objective of this research is to prove the 

sum and product of two mixed monotone operators and to find some conditions in order to the 

product is mixed monotone operator. 

 

2. Research Method 

To prove the sum and product of two mixed monotone operators done in three steps. 

Firstly by defining some partial ordering in subset of Banach space. Then to find some 

conditions of mixed monotone operators. The last showing that two relevant operations satisfy 

some definition. 

 

3. Result and Discussion 

1.  Prelimineries  
In this section we will give some definitions and theories of monotone function. 

Definition 1.1: Let 𝑆 be a nonvoid set and 𝑅 is relation on set 𝑆. Relation 𝑅 is called partial 

ordering on 𝑆 if 𝑅 satisfy the following property: 

(𝑖)   𝑅 is reflexive  
(𝑖𝑖)  𝑅 is antysimmetric 

(𝑖𝑖𝑖) 𝑅 is transitive[3]    
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Definition 1.2: Let 𝐸 always be a Real Banach space and 𝑃 a subset of 𝐸. 𝑃 is called a cone if  

 (𝑖)   𝑃 is closed, non-empty and 𝑃 ≠ {0} 

(𝑖𝑖)  𝑎𝑥 + 𝑏𝑦 ∈ 𝑃 for all 𝑥, 𝑦 ∈ 𝑃 and non- 

         negative real numbers 𝑎, 𝑏 

(𝑖𝑖𝑖) 𝑃 ∩ (−𝑃) = {0}[11] 

 

Definition 1.3 : Let 𝑋 be a nonvoid set and let 𝐸 be a Real Banach space equipped with the 

partial oredering ≤ with respect to the cone 𝑃 ⊆ 𝐸. Suppose that the mapping 

𝑑: 𝑋 × 𝑋 → 𝐸 satisfies the following conditions: 

(𝑑1)  0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 

         𝑑(𝑥, 𝑦) = 0 if and only if  𝑥 = 𝑦; 

(𝑑2)  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

(𝑑3)  𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 

         𝑥, 𝑦, 𝑧 ∈ 𝑋.[11] 

Then 𝒅 is called a cone metric on 𝑋, and (𝑋, 𝑑) is called a cone metric space.  

. 

Definition 1.4 : Let 𝑆 ⊂ ℝ. A function 𝑓: 𝑆 → ℝ is said to be nondecreasing on 𝑆 if whenever 

𝑥, 𝑦 ∈ 𝑆 and 𝑥 < 𝑦 then 𝑓(𝑥) ≤ 𝑓(𝑦)[10].  

 

Definition 1.5: Let 𝑆 ⊂ ℝ. A function 𝑓: 𝑆 → ℝ is said to be nondecreasing on 𝑆 if whenever 

𝑥, 𝑦 ∈ 𝑆 and 𝑥 < 𝑦 then 𝑓(𝑦) ≤ 𝑓(𝑥)[10]. 

 

The following Lemma 1.6 state the result of the sum of two monotone functions.  

Lemma 1.6: Let 𝑆 ⊂ ℝ and two functions 𝑓, 𝑔: 𝑆 → ℝ. If 𝑓 and 𝑔 are monotone functions then 

𝑓 + 𝑔 is a monotone function.[10] 

 

The following Example 1.7 illustrate the product of two monotone functions in not monotonous. 

Example 1.7: Let 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = 𝑥 𝑔(𝑥) = 𝑥 − 1 defined on [0,1], then 𝑓 and 𝑔 are 

nondecreasing functions on [0,1] but their product 𝑓𝑔 is not nondecreasing on [0,1].[1] 

 

Let 𝐸 is a Real Banach space, which is partially ordered by a cone 𝑃, i.e., 𝑥 ≤ 𝑦 iff 𝑦 − 𝑥 ∈ 𝑃.  

Definition 1.8: Let 𝐷 ⊂ 𝐸. An operator 𝐴: 𝐷 × 𝐷 → 𝐸 is said to be mixed monotone if 𝐴(𝑥, 𝑦) 

is nondecreasing in 𝑥 and nonincreasing in 𝑦.[13]  

 

2.  Main Result  

In this part we assume E is real Banach space which is partially ordered by a cone P, put �̃� =
{(𝑥, 𝑦) ∈ 𝐸 × 𝐸|𝑥 ≥ 0, 𝑦 ≤ 0}. It is clear that �̃� is a cone in 𝐸 × 𝐸. 

 

We need the following  Lemma 2.1 to prove two next theorems as main result.  

Lemma 2.1 : Define relation ≼ on 𝐸 × 𝐸 by (𝑥1, 𝑦1) ≼ (𝑥2, 𝑦2) if and only if 𝑥1 ≤ 𝑥2 and 

𝑦1 ≥ 𝑦2. Then  ≼ is partial ordering in 𝐸 × 𝐸. 

 

Proof:  

To prove that ≼ is partial ordering in 𝐸 × 𝐸 firstly we show that the relation ≤ on 𝐸 × 𝐸 is 

reflexsive. 
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Let (𝑥, 𝑦)be arbitrary in 𝐸 × 𝐸 then we get  𝑥 ≤ 𝑥  and  𝑦 ≥ 𝑦. Following defining of relation 

≼, it means (𝑥, 𝑦) ≼ (𝑥, 𝑦). In according to Definition 1.1.(𝑖), then the relation ≼ is reflexsive. 

 

 For the condition (𝑖𝑖) dan (𝑖𝑖𝑖), we leave it. 

 

Let Let 𝐷 ⊂ 𝐸 and  operator 𝐴, 𝐵: 𝐷 × 𝐷 → 𝐸 be mixed monotone operators. 

The sum of two mixed monoton operaton in the following Theorem 2.2. 

Theorem 2.2: Let Let 𝐷 ⊂ 𝐸 and  operator 𝐴, 𝐵: 𝐷 × 𝐷 → 𝐸. If 𝐴 and 𝐵 are mixed monotone 

operators then 𝐴 + 𝐵 is a mixed monotone operator. 

  

Proof: To prove that  𝐴 + 𝐵 is a mixed monotone operator, firstly we show that 𝐴 + 𝐵 is 

nondecreasing in 𝑥. 

Suppose (𝑥1, 𝑦) and (𝑥2, 𝑦) ∈ 𝐷 × 𝐷 with (𝑥1, 𝑦) ≼ (𝑥2, 𝑦). Based on Lemma 2.1 then 

𝑥1 < 𝑥2. Since 𝐴 and 𝐵 are mixed monotone operators, following Definition 1.8 then 𝐴 and 𝐵 

are nondecreasing in 𝑥. Based on Definition 1.4 we get 𝐴(𝑥2, 𝑦) − 𝐴(𝑥1, 𝑦) ≥ 0 and 𝐵(𝑥2, 𝑦) −
𝐵(𝑥1, 𝑦) ≥ 0. Therefore  
(𝐴 + 𝐵)(𝑥2, 𝑦) − (𝐴 + 𝐵)(𝑥1, 𝑦) ≥ 0.  

So (𝐴 + 𝐵)(𝑥2, 𝑦) ≥ (𝐴 + 𝐵)(𝑥1, 𝑦).  

In according to Definition 1.4, we conclude 𝐴 + 𝐵 is nondecreasing in 𝑥. 

 

The last, we show that 𝐴 + 𝐵 is nondecreasing in 𝑦. 

Suppose (𝑥, 𝑦1) and (𝑥, 𝑦2) ∈ 𝐷 × 𝐷 with (𝑥, 𝑦1) ≼ (𝑥, 𝑦2). Based on Lemma 2.1 then 

𝑦1 > 𝑦2 . Since 𝐴 and 𝐵 are mixed monotone operators, following Definition 1.8 then 𝐴 and 𝐵 

are nonincreasing in 𝑦. Based on Definition 1.4 we get 𝐴(𝑥, 𝑦2) − 𝐴(𝑥, 𝑦1) ≥ 0 and 𝐵(𝑥, 𝑦2) −
𝐵(𝑥, 𝑦1) ≥ 0. Therefore  

(𝐴 + 𝐵)(𝑥, 𝑦2) − (𝐴 + 𝐵)(𝑥, 𝑦1) ≥ 0. So (𝐴 + 𝐵)(𝑥, 𝑦2) ≥ (𝐴 + 𝐵)(𝑥, 𝑦1). In according to 

Definition 1.4, we conclude 𝐴 + 𝐵 is nonincreasing in 𝑦. 

Hence, in according to Definition 1.8, we conclude that 𝐴 + 𝐵 is a mixed monotone operator. 

 

The result of the product of two mixed monotone operators given in the following Theorem 2.3.    

Theorem 2.3: Let Let 𝐷 ⊂ 𝐸 and  operator 𝐴, 𝐵: 𝐷 × 𝐷 → 𝐸. If 𝐴 and 𝐵 are positive mixed 

monotone operators then 𝐴 + 𝐵 is a mixed monotone operator. 

 

Proof: To prove that  𝐴𝐵 is a mixed monotone operator, firstly we show that 𝐴𝐵 is 

nondecreasing in 𝑥. 

Suppose (𝑥1, 𝑦) and (𝑥2, 𝑦) ∈ 𝐷 × 𝐷 with (𝑥1, 𝑦) ≼ (𝑥2, 𝑦). Based on Lemma 2.1 then 

𝑥1 < 𝑥2 . Since 𝐴 and 𝐵 are mixed monotone operators, following Definition 1.8 then 𝐴 and 𝐵 

are nondecreasing in 𝑥. Based on Definition 1.4 we get 𝐴(𝑥2, 𝑦) − 𝐴(𝑥1, 𝑦) ≥ 0 and 𝐵(𝑥2, 𝑦) −
𝐵(𝑥1, 𝑦) ≥ 0. Therefore  

𝐴𝐵(𝑥2, 𝑦) − 𝐴𝐵(𝑥1, 𝑦) = 𝐴(𝑥2, 𝑦)𝐵(𝑥2, 𝑦) − 𝐴(𝑥2, 𝑦)𝐵(𝑥1, 𝑦) + 𝐴(𝑥2, 𝑦)𝐵(𝑥1, 𝑦) −
𝐴(𝑥1, 𝑦)𝐵(𝑥1, 𝑦). 

= 𝐴(𝑥2, 𝑦)[𝐵(𝑥2, 𝑦) −  𝐵(𝑥1, 𝑦)] − [𝐴(𝑥2, 𝑦) − 𝐴(𝑥1, 𝑦)]𝐵(𝑥1, 𝑦) 

Because 𝐴 and 𝐵 are positive operators then 𝐴𝐵(𝑥2, 𝑦) − 𝐴𝐵(𝑥1, 𝑦) ≥ 0.  

So, 𝐴𝐵(𝑥2, 𝑦) ≥ 𝐴𝐵(𝑥1, 𝑦).  

In according to Definition 1.4, we conclude 𝐴𝐵 is nondecreasing in 𝑥. 

 

The last, we show that 𝐴𝐵 is nonincreasing in 𝑦. 
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Suppose (𝑥, 𝑦1) and (𝑥, 𝑦2) ∈ 𝐷 × 𝐷 with (𝑥, 𝑦1) ≼ (𝑥, 𝑦2). Based on Lemma 2.1 then 

𝑦1 > 𝑦2. Since 𝐴 and 𝐵 are mixed monotone operators, following Definition 1.8 then 𝐴 and 𝐵 

are nonincreasing in 𝑦. Based on Definition 1.4 we get 𝐴(𝑥, 𝑦2) − 𝐴(𝑥, 𝑦1) ≥ 0 and 𝐵(𝑥, 𝑦2) −
𝐵(𝑥, 𝑦1) ≥ 0. Therefore  

𝐴𝐵(𝑥, 𝑦2) − 𝐴𝐵(𝑥, 𝑦1) = 𝐴(𝑥, 𝑦2)𝐵(𝑥, 𝑦2) − 𝐴(𝑥, 𝑦2)𝐵(𝑥, 𝑦1) + 𝐴(𝑥, 𝑦2)𝐵(𝑥, 𝑦1) −
𝐴(𝑥, 𝑦1)𝐵(𝑥, 𝑦1). 

= 𝐴(𝑥, 𝑦2)[𝐵(𝑥, 𝑦2) −  𝐵(𝑥, 𝑦1)] − [𝐴(𝑥, 𝑦2) − 𝐴(𝑥, 𝑦1)]𝐵(𝑥, 𝑦1) 

Because 𝐴 and 𝐵 are positive operators then 𝐴𝐵(𝑥, 𝑦2) − 𝐴𝐵(𝑥, 𝑦1) ≥ 0.  

So 𝐴𝐵(𝑥, 𝑦2) ≥ 𝐴𝐵(𝑥, 𝑦1).  

In according to Definition   1.4, we conclude 𝐴𝐵 is nondecreasing in 𝑦. 

 

Hence, in according to Definition 1.8, we conclude that 𝐴𝐵 is a mixed monotone operator. 

 

4. Conclusion 

In this paper we have the conlusion that the sum of two mixed monotone operator is mixed 

monotone operator, while the product is mixed monotone operator if both are positive operator. 
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